【題目】如圖,點(diǎn)表示太陽(yáng),表示一個(gè)三角形遮陽(yáng)柵,點(diǎn)是地面上南北方向的兩個(gè)定點(diǎn),正西方向射出的太陽(yáng)光線把遮陽(yáng)柵投射到地面得出遮影.已知光線與地面成銳角.

(1).遮陽(yáng)柵與地面成多少度角時(shí),才能使遮影面積最大?

(2).當(dāng),,時(shí),求出遮影的最大面積.

【答案】(1)(2)12

【解析】

(1)如下圖,過(guò)作地面的垂線,連,連.是斜線在地面上的射影,有.又由是南北方向,是西東方向知.(隱含條件)據(jù)三垂線定理得逆定理有.由線面垂直的性質(zhì)定理有.這就得出同垂直于相交直線、,可得垂直于面,從而,.可見(jiàn),邊上的高.邊上的高,并且遮陽(yáng)柵與地面所成的二面角的平面角為.

中,有(定值).

所以,當(dāng)(遮陽(yáng)柵與太陽(yáng)光線垂直)時(shí),最大,從而時(shí),遮影面積最大.

(2)當(dāng),,,時(shí),為直角三角形,且.

將①代人面積公式,得最大面積為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為實(shí)數(shù).

1)若函數(shù)為定義域上的單調(diào)函數(shù),求的取值范圍.

2)若,滿足不等式成立的正整數(shù)解有且僅有一個(gè),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“2019曹娥江國(guó)際馬拉松在上虞舉行,現(xiàn)要選派5名志愿者服務(wù)于四個(gè)不同的運(yùn)動(dòng)員救助點(diǎn),每個(gè)救助點(diǎn)至少分配1人,若志愿者甲要求不到A救助點(diǎn),則不同的分派方案有________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】4支足球隊(duì)進(jìn)行單循環(huán)比賽(任兩支球隊(duì)恰進(jìn)行一場(chǎng)比賽),任兩支球隊(duì)之間勝率都是.單循環(huán)比賽結(jié)束,以獲勝的場(chǎng)次數(shù)作為該隊(duì)的成績(jī),成績(jī)按從大到小排名次順序,成績(jī)相同則名次相同.下列結(jié)論中正確的是(

A.恰有四支球隊(duì)并列第一名為不可能事件B.有可能出現(xiàn)恰有三支球隊(duì)并列第一名

C.恰有兩支球隊(duì)并列第一名的概率為D.只有一支球隊(duì)名列第一名的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】試確定平面上是否存在滿足下述條件的兩個(gè)不相交的無(wú)限點(diǎn)集、

(1)在中,任何三點(diǎn)不共線,且任何兩點(diǎn)的距離至少為1;

(2)任何一個(gè)頂點(diǎn)在中的三角形,其內(nèi)部均存在一個(gè)中的點(diǎn),任何一個(gè)頂點(diǎn)在中的三角形,其內(nèi)部均存在一個(gè)中的點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知斜率為1的直線與橢圓交于,兩點(diǎn),且線段的中點(diǎn)為,橢圓的上頂點(diǎn)為.

(1)求橢圓的離心率;

(2)設(shè)直線與橢圓交于兩點(diǎn),若直線的斜率之和為2,證明:過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司做了用戶對(duì)其產(chǎn)品滿意度的問(wèn)卷調(diào)查,隨機(jī)抽取了20名用戶的評(píng)分,得到圖所示莖葉圖,對(duì)不低于75的評(píng)分,認(rèn)為用戶對(duì)產(chǎn)品滿意,否則,認(rèn)為不滿意,

1)根據(jù)以上資料完成下面的列聯(lián)表,若據(jù)此數(shù)據(jù)算得,則在犯錯(cuò)的概率不超過(guò)的前提下,你是否認(rèn)為“滿意與否”與“性別”有關(guān)?

不滿意

滿意

合計(jì)

4

7

合計(jì)

附:

0.100

0.050

0.010

2.706

3.841

6.635

2)估計(jì)用戶對(duì)該公司的產(chǎn)品“滿意”的概率;

3)該公司為對(duì)客戶做進(jìn)一步的調(diào)查,從上述對(duì)其產(chǎn)品滿意的用戶中再隨機(jī)選取2人,求這兩人都是男用戶或都是女用戶的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某校矩形的航天知識(shí)競(jìng)賽中,參與競(jìng)賽的文科生與理科生人數(shù)之比為1:3,且成績(jī)分布在范圍內(nèi),規(guī)定分?jǐn)?shù)在80以上(含80)的同學(xué)獲獎(jiǎng),按文理科用分層抽樣的放發(fā)抽取200人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖.

(Ⅰ)填寫(xiě)下面的列聯(lián)表,能否有超過(guò)95%的把握認(rèn)為“獲獎(jiǎng)與學(xué)生的文理科有關(guān)”;

(Ⅱ)將上述調(diào)查所得的頻率視為概率,現(xiàn)從參賽學(xué)生中,任意抽取3名學(xué)生,記“獲獎(jiǎng)”學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.

附表及公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年春節(jié)期間,某超市準(zhǔn)備舉辦一次有獎(jiǎng)促銷活動(dòng),若顧客一次消費(fèi)達(dá)到400元?jiǎng)t可參加一次抽獎(jiǎng)活動(dòng),超市設(shè)計(jì)了兩種抽獎(jiǎng)方案.

方案一:一個(gè)不透明的盒子中裝有30個(gè)質(zhì)地均勻且大小相同的小球,其中10個(gè)紅球,20個(gè)白球,攪拌均勻后,顧客從中隨機(jī)抽取一個(gè)球,若抽到紅球則顧客獲得60元的返金券,若抽到白球則獲得20元的返金券,且顧客有放回地抽取3次.

方案二:一個(gè)不透明的盒子中裝有30個(gè)質(zhì)地均勻且大小相同的小球,其中10個(gè)紅球,20個(gè)白球,攪拌均勻后,顧客從中隨機(jī)抽取一個(gè)球,若抽到紅球則顧客獲得80元的返金券,若抽到白球則未中獎(jiǎng),且顧客有放回地抽取3次.

(1)現(xiàn)有兩位顧客均獲得抽獎(jiǎng)機(jī)會(huì),且都按方案一抽獎(jiǎng),試求這兩位顧客均獲得180元返金券的概率;

(2)若某顧客獲得抽獎(jiǎng)機(jī)會(huì).

①試分別計(jì)算他選擇兩種抽獎(jiǎng)方案最終獲得返金券的數(shù)學(xué)期望;

②為了吸引顧客消費(fèi),讓顧客獲得更多金額的返金券,該超市應(yīng)選擇哪一種抽獎(jiǎng)方案進(jìn)行促銷活動(dòng)?

查看答案和解析>>

同步練習(xí)冊(cè)答案