【題目】如圖,兩條相交線段、的四個(gè)端點(diǎn)都在橢圓上,其中直線的方程為,直線的方程為.

(1)若,求的值;

(2)探究:是否存在常數(shù),當(dāng)變化時(shí),恒有

【答案】(1);(2)存在,見解析

【解析】

1)當(dāng)時(shí),聯(lián)立方程組求得,根據(jù),利用,列出方程,即可求解;

2)設(shè),由,得,利用韋達(dá)定理,結(jié)合橢圓的對(duì)稱性,分類討論,即可得到結(jié)論.

1)由題意,當(dāng)時(shí),聯(lián)立方程組,解得

因?yàn)?/span>,所以

設(shè),則,化簡得,

又由,聯(lián)立方程組,解得.

因?yàn)?/span>平分,所以(不適合題意),所以.

2)設(shè),

,整理得

其中,

若存在常數(shù),當(dāng)變化時(shí),恒有,

則由(1)可知只可能是

①當(dāng)時(shí),取等價(jià)于,

,

,

,此式子恒成立,

所以存在常數(shù),當(dāng)變化時(shí),恒有;

②當(dāng)時(shí),取,由橢圓的對(duì)稱性,同理可知結(jié)論也成立,

綜上可得,存在常數(shù),當(dāng)變化時(shí),恒有;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于定義域?yàn)?/span>的函數(shù),部分的對(duì)應(yīng)關(guān)系如下表:

-2

-1

0

1

2

3

4

5

0

2

3

2

0

-1

0

2

1)求;

2)數(shù)列滿足,且對(duì)任意,點(diǎn)都在函數(shù)的圖像上,求;

3)若,其中,求此函數(shù)的解析式,并求。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為,其中為參數(shù),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)P的極坐標(biāo)為,直線l的極坐標(biāo)方程為.

1)求曲線C的普通方程與直線l的直角坐標(biāo)方程;

2)若Q是曲線C上的動(dòng)點(diǎn),M為線段PQ的中點(diǎn),求點(diǎn)M到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓Cab>0)的兩個(gè)焦點(diǎn)分別為F1,F2,離心率為,過F1的直線l與橢C交于M,N兩點(diǎn),且MNF2的周長為8.

(1)求橢圓C的方程;

(2)若直線ykxb與橢圓C分別交于AB兩點(diǎn),且OAOB,試問點(diǎn)O到直線AB的距離是否為定值,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】樹立和踐行“綠水青山就是金山銀山,堅(jiān)持人與自然和諧共生”的理念越來越深入人心,已形成了全民自覺參與,造福百姓的良性循環(huán).據(jù)此,某網(wǎng)站推出了關(guān)于生態(tài)文明建設(shè)進(jìn)展情況的調(diào)查,大量的統(tǒng)計(jì)數(shù)據(jù)表明,參與調(diào)查者中關(guān)注此問題的約占80%.現(xiàn)從參與調(diào)查的人群中隨機(jī)選出人,并將這人按年齡分組:第1,第2,第3,第4 ,第5,得到的頻率分布直方圖如圖所示

(1) 求的值

(2)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取人,再從這人中隨機(jī)抽取人進(jìn)行問卷調(diào)查,求在第1組已被抽到人的前提下,第3組被抽到人的概率;

(3)若從所有參與調(diào)查的人中任意選出人,記關(guān)注“生態(tài)文明”的人數(shù)為,求的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點(diǎn),且右焦點(diǎn)為

1)求橢圓的方程;

2)過點(diǎn)的直線與橢圓交于兩點(diǎn),交軸于點(diǎn).若,求證:為定值;

3)在(2)的條件下,若點(diǎn)不在橢圓的內(nèi)部,點(diǎn)是點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn),試求三角形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓過定點(diǎn),圓心在拋物線上,、為圓軸的交點(diǎn).

1)求圓半徑的最小值;

2)當(dāng)圓心在拋物線上運(yùn)動(dòng)時(shí),是否為一定值?請(qǐng)證明你的結(jié)論;

3)當(dāng)圓心在拋物線上運(yùn)動(dòng)時(shí),記,,求的最大值,并求此時(shí)圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù),當(dāng)時(shí),函數(shù)有極值

1)求函數(shù)的解析式;

2)求函數(shù)的極值;

3)若關(guān)于x的方程有三個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD的邊長為2,對(duì)角線AC、BD相交于點(diǎn)O,動(dòng)點(diǎn)P滿足,若,其中m、nR,則的最大值是________

查看答案和解析>>

同步練習(xí)冊(cè)答案