稱滿足以下兩個(gè)條件的有窮數(shù)列階“期待數(shù)列”:
;②.
(1)若數(shù)列的通項(xiàng)公式是
試判斷數(shù)列是否為2014階“期待數(shù)列”,并說明理由;
(2)若等比數(shù)列階“期待數(shù)列”,求公比q及的通項(xiàng)公式;
(3)若一個(gè)等差數(shù)列既是階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項(xiàng)公式;
(1)是;
(2);
(3);

試題分析:(1)判斷數(shù)列是不是為2014階“期待數(shù)列”,就是根據(jù)定義計(jì)算,,是不是一個(gè)為0,一個(gè)為1,如是則是“期待數(shù)列”,否則就不是;(2)數(shù)列中等比數(shù)列,因此是其前和,故利用前前項(xiàng)和公式,分進(jìn)行討論,可很快求出,;(3)階等差數(shù)列是遞增數(shù)列,即公差,其和為0,故易知數(shù)列前面的項(xiàng)為負(fù),后面的項(xiàng)為正,即前項(xiàng)為正,后項(xiàng)為正,因此有,這兩式用基本量或直接相減可求得,,因此通項(xiàng)公式可得.
試題解析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032400041595.png" style="vertical-align:middle;" />,          2分
所以

,
所以數(shù)列為2014階“期待數(shù)列”           4分
(2)①若,由①得,,得,矛盾.     5分
,則由①=0,得,     7分
由②得
所以,.?dāng)?shù)列的通項(xiàng)公式是
            9分
(3)設(shè)等差數(shù)列的公差為,>0.
,∴,∴,
>0,由,,         11分
由①、②得,,     13分
兩式相減得,, ∴,
,得
∴數(shù)列的通項(xiàng)公式是.  16分和公式與通項(xiàng)公式;(3)等差數(shù)列的前和公式與通項(xiàng)公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)無窮等比數(shù)列的公比為q,且,表示不超過實(shí)數(shù)的最大整數(shù)(如),記,數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為.
(Ⅰ)若,求
(Ⅱ)若對(duì)于任意不超過的正整數(shù)n,都有,證明:.
(Ⅲ)證明:)的充分必要條件為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1,a32=9a2a6.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知為實(shí)數(shù),數(shù)列滿足,當(dāng)時(shí),
(Ⅰ);(5分)
(Ⅱ)證明:對(duì)于數(shù)列,一定存在,使;(5分)
(Ⅲ)令,當(dāng)時(shí),求證:(6分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知定義在上的函數(shù)滿足,且,若是正項(xiàng)等比數(shù)列,且,則等于      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等比數(shù)列的和為定值,且公比為,令,則的取值范圍為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等比數(shù)列中,,且,則的值為(   )
A.4B.-4C.±4D.±

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù),)的圖像經(jīng)過點(diǎn),則______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知正項(xiàng)等比數(shù)列{}的前n項(xiàng)和為,且,則= __________.

查看答案和解析>>

同步練習(xí)冊(cè)答案