【題目】已知橢圓:的左、右點(diǎn)分別為點(diǎn)在橢圓上,且
(1)求橢圓的方程;
(2)過(guò)點(diǎn)(1,0)作斜率為的直線(xiàn)交橢圓于M、N兩點(diǎn),若求直線(xiàn)的方程;
(3)點(diǎn)P、Q為橢圓上的兩個(gè)動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),若直線(xiàn)的斜率之積為求證:為定值.
【答案】(1);(2)或y=-x+1;(3)5
【解析】
(1)由點(diǎn)在橢圓上,且,列出方程組求出,,由此能求出橢圓的方程.
(2) 設(shè)直線(xiàn)l的方程為,設(shè),,,,聯(lián)立直線(xiàn)和橢圓的方程得到韋達(dá)定理,再利用數(shù)量積和韋達(dá)定理求出k的值,即得直線(xiàn)方程;
(3)設(shè)直線(xiàn),聯(lián)立,求出,同理求出,證明為定值.
(1)橢圓的左右焦點(diǎn)分別為,,
點(diǎn)在橢圓上,且,
,解得,,
橢圓的方程為.
(2)設(shè)直線(xiàn)l的方程為,
設(shè),,,,
由,得,
所以,
又,,,
所以,
所以,
所以,均滿(mǎn)足題意.
所以直線(xiàn)的方程為或.
(3)設(shè)直線(xiàn),
聯(lián)立方程組,得,
,
又直線(xiàn),
同理,得,
,為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】環(huán)保部門(mén)要對(duì)所有的新車(chē)模型進(jìn)行廣泛測(cè)試,以確定它的行車(chē)?yán)锍痰牡燃?jí),右表是對(duì) 100 輛新車(chē)模型在一個(gè)耗油單位內(nèi)行車(chē)?yán)锍蹋▎挝唬汗铮┑臏y(cè)試結(jié)果.
(Ⅰ)做出上述測(cè)試結(jié)果的頻率分布直方圖,并指出其中位數(shù)落在哪一組;
(Ⅱ)用分層抽樣的方法從行車(chē)?yán)锍淘趨^(qū)間[38,40)與[40,42)的新車(chē)模型中任取5輛,并從這5輛中隨機(jī)抽取2輛,求其中恰有一個(gè)新車(chē)模型行車(chē)?yán)锍淘赱40,42)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正整數(shù)數(shù)列滿(mǎn)足:,,().
(1)已知,,試求、的值;
(2)若,求證:;
(3)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某景區(qū)欲建兩條圓形觀(guān)景步道(寬度忽略不計(jì)),如圖所示,已知,(單位:米),要求圓M與分別相切于點(diǎn)B,D,圓與分別相切于點(diǎn)C,D.
(1)若,求圓的半徑;(結(jié)果精確到0.1米)
(2)若觀(guān)景步道的造價(jià)分別為每米0.8千元與每米0.9千元,則當(dāng)多大時(shí),總造價(jià)最低?最低總造價(jià)是多少?(結(jié)果分別精確到0.1°和0.1千元)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△的內(nèi)角、、的對(duì)邊分別為、、,其中,且,延長(zhǎng)線(xiàn)段到點(diǎn),使得,.
(1)求證:是直角;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:若數(shù)列滿(mǎn)足,存在實(shí)數(shù),對(duì)任意,都有,則稱(chēng)數(shù)列有上界,是數(shù)列的一個(gè)上界,已知定理:?jiǎn)握{(diào)遞增有上界的數(shù)列收斂(即極限存在).
(1)數(shù)列是否存在上界?若存在,試求其所有上界中的最小值;若不存在,請(qǐng)說(shuō)明理由;
(2)若非負(fù)數(shù)列滿(mǎn)足,(),求證:1是非負(fù)數(shù)列的一個(gè)上界,且數(shù)列的極限存在,并求其極限;
(3)若正項(xiàng)遞增數(shù)列無(wú)上界,證明:存在,當(dāng)時(shí),恒有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果存在常數(shù)a,使得數(shù)列{an}滿(mǎn)足:若x是數(shù)列{an}中的一項(xiàng),則a-x也是數(shù)列{an}中的一項(xiàng),稱(chēng)數(shù)列{an}為“兌換數(shù)列”,常數(shù)a是它的“兌換系數(shù)”.
(1)若數(shù)列:2,3,6,m(m>6)是“兌換系數(shù)”為a的“兌換數(shù)列”,求m和a的值;
(2)已知有窮等差數(shù)列{bn}的項(xiàng)數(shù)是n0(n0≥3),所有項(xiàng)之和是B,求證:數(shù)列{bn}是“兌換數(shù)列”,并用n0和B表示它的“兌換系數(shù)”;
(3)對(duì)于一個(gè)不少于3項(xiàng),且各項(xiàng)皆為正整數(shù)的遞增數(shù)列{cn},是否有可能它既是等比數(shù)列,又是“兌換數(shù)列”?給出你的結(jié)論,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱錐P﹣ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一點(diǎn),且CD⊥平面PAB.
(1)求證:AB⊥平面PCB;
(2)求二面角C﹣PA﹣B的大小的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】記無(wú)窮數(shù)列的前項(xiàng)中最大值為,最小值為,令
(Ⅰ)若,請(qǐng)寫(xiě)出的值;
(Ⅱ)求證:“數(shù)列是等差數(shù)列”是“數(shù)列是等差數(shù)列”的充要條件;
(Ⅲ)若 ,求證:存在,使得,有
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com