【題目】記無窮數(shù)列的前項中最大值為,最小值為,令
(Ⅰ)若,請寫出的值;
(Ⅱ)求證:“數(shù)列是等差數(shù)列”是“數(shù)列是等差數(shù)列”的充要條件;
(Ⅲ)若 ,求證:存在,使得,有
【答案】(1),,,; (2)見解析; (3)見解析.
【解析】
(Ⅰ)分別計算出,,,結(jié)合題意即可得的值;(Ⅱ)先證必要性,無論為何值始終有,即可證得結(jié)果,再證充分性,當(dāng)數(shù)列是等差數(shù)列時,設(shè)其公差為,根據(jù)等差數(shù)列的定義化簡可得,進而可證得是單調(diào)數(shù)列,始終可得,進而得最后結(jié)論;(Ⅲ)利用反證法,由或者可得,,化簡可得,即,對利用累加法,可得與題意矛盾,即得結(jié)論.
(Ⅰ)因為,所以,,,
所以,,,
(Ⅱ)(必要性)當(dāng)數(shù)列是等差數(shù)列時,設(shè)其公差為d
當(dāng)時,,所以,所以,,
當(dāng),,所以,所以,
當(dāng)是,,所以,所以,
綜上,總有
所以 ,所以數(shù)列是等差數(shù)列
(充分性)當(dāng)數(shù)列是等差數(shù)列時,設(shè)其公差為
因為,
根據(jù),的定義,有以下結(jié)論:
,,且兩個不等式中至少有個取等號
當(dāng),則必有,所以,
所以是一個單調(diào)遞增數(shù)列,所以,,
所以
所以,即為等差數(shù)列
當(dāng)時,則必有,所以
所以是一個單調(diào)遞減數(shù)列,所以,,
所以
所以,即為等差數(shù)列
當(dāng),
因為,中必有一個為0,
根據(jù)上式,一個為0,則另一個亦為0,
所以,,所以為常數(shù)數(shù)列,所以為等差數(shù)列
綜上,結(jié)論得證.
(Ⅲ)假設(shè)結(jié)論不成立.
因為,即或者,
所以對任意,一定存在,使得,符號相反
所以在數(shù)列中存在,,,……,,……,其中
且 ,
,
因為,即,
注意,,且有且僅有一個等號成立,
所以必有 ,
所以,所以
因為,所以,所以
所以
所以
所以
……
所以
所以
所以,
這與矛盾,所以假設(shè)錯誤,
所以存在,使得,有.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求的值域;
(2)求函數(shù)的最小正周期及函數(shù)的單調(diào)區(qū)間;
(3)將函數(shù)的圖像向右平移個單位后,再將得到的圖像上各點的橫坐標變?yōu)樵瓉淼?/span>倍,縱坐標保持不變,得到函數(shù)的圖像,求函數(shù)的表達式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題,其中所有正確命題的序號是__________.
①拋物線的準線方程為;
②過點作與拋物線只有一個公共點的直線僅有1條;
③是拋物線上一動點,以為圓心作與拋物線準線相切的圓,則此圓一定過定點.
④拋物線上到直線距離最短的點的坐標為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)若是奇函數(shù),求的值,并判斷的單調(diào)性(不用證明);
(2)若函數(shù)在區(qū)間(0,1)上有兩個不同的零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)a=1時,寫出的單調(diào)遞增區(qū)間(不需寫出推證過程);
(Ⅱ)當(dāng)x>0時,若直線y=4與函數(shù)的圖像交于A,B兩點,記,求的最大值;
(Ⅲ)若關(guān)于x的方程在區(qū)間(1,2)上有兩個不同的實數(shù)根,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓錐如圖①所示,圖②是它的正(主)視圖.已知圓的直徑為, 是圓周上異于的一點, 為的中點.
(I)求該圓錐的側(cè)面積S;
(II)求證:平面⊥平面;
(III)若∠CAB=60°,在三棱錐中,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對數(shù)函數(shù)(且)和指數(shù)函數(shù)(且)互為反函數(shù).已知函數(shù),其反函數(shù)為.
(1)若函數(shù)定義域為,求實數(shù)的取值范圍.
(2)若為定義在上的奇函數(shù),且時,.求的解析式.
(3)定義在上的函數(shù),如果滿足:對任意的,存在常數(shù),都有成立,則稱函數(shù)是上的有界函數(shù),其中為函數(shù)的上界.若函數(shù),當(dāng)時,探究函數(shù)在上是否存在上界,若存在求出的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) f (x) = x ex (xR)
(Ⅰ)求函數(shù) f (x)的單調(diào)區(qū)間和極值;
(Ⅱ)若x (0, 1), 求證: f (2 x) > f (x);
(Ⅲ)若x1 (0, 1), x2(1, +∞), 且 f (x1) = f (x2), 求證: x1 + x2 > 2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)節(jié)能降耗技術(shù)改造后,在生產(chǎn)某產(chǎn)品過程中的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸)的幾組對應(yīng)數(shù)據(jù)如表所示:
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
若根據(jù)表中數(shù)據(jù)得出y關(guān)于x的線性回歸方程為0.7x+a,若生產(chǎn)7噸產(chǎn)品,預(yù)計相應(yīng)的生產(chǎn)能耗為( )噸.
A.5.25B.5.15C.5.5D.9.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com