【題目】如圖,四棱錐中,底面ABCD為矩形,點(diǎn)EPA線段上,PC平面BDE

1)請(qǐng)確定點(diǎn)E的位置;并說(shuō)明理由.

2)若是等邊三角形,, 平面PAD平面ABCD,四棱錐的體積為,求點(diǎn)E到平面PCD的距離.

【答案】1)點(diǎn)的中點(diǎn),理由見(jiàn)解析(2

【解析】

(1)連結(jié)AC、BD,交于點(diǎn)M,連結(jié)MEMAC中點(diǎn),由PC平面BDE,得PCME,由此能證明AE=PE

(2)以AD中點(diǎn)O為原點(diǎn),OAx軸,在平面ABCD中,過(guò)點(diǎn)OAB的平行線為y軸,以OPz軸,建立空間直角坐標(biāo)系,利用向量法能求出E到平面PCD的距離.

(1)連接ACBDM,如圖,

當(dāng)EAP的中點(diǎn)時(shí), 點(diǎn)MAC的中點(diǎn).

∴在中,,平面BDE,

平面BDE. 平面BDE.

2是等邊三角形,,平面平面ABCD,

AD中點(diǎn)O為原點(diǎn),OAx軸,在平面ABCD中,過(guò)點(diǎn)OAB的平行線為y軸,

OPz軸,建立空間直角坐標(biāo)系,

設(shè),四棱錐的體積為

,解得

0,,0,,0,,0,6,

06,,0,,

設(shè)平面PCD的法向量,

,取,得0,

到平面PCD的距離

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】自由購(gòu)是一種通過(guò)自助結(jié)算購(gòu)物的形式.某大型超市為調(diào)查顧客自由購(gòu)的使用情況,隨機(jī)抽取了100人,調(diào)查結(jié)果整理如下:

20以下

[20,30

[30,40

[40,50

[50,60

[60,70]

70以上

使用人數(shù)

3

12

17

6

4

2

0

未使用人數(shù)

0

0

3

14

36

3

0

1)現(xiàn)隨機(jī)抽取1名顧客,試估計(jì)該顧客年齡在[3050)且未使用自由購(gòu)的概率;

2)從被抽取的年齡在[50,70]使用的自由購(gòu)顧客中,隨機(jī)抽取2人進(jìn)一步了解情況,求這2人年齡都在[50,60)的概率;

3)為鼓勵(lì)顧客使用自由購(gòu),該超市擬對(duì)使用自由購(gòu)顧客贈(zèng)送1個(gè)環(huán)保購(gòu)物袋.若某日該超市預(yù)計(jì)有5000人購(gòu)物,試估計(jì)該超市當(dāng)天至少應(yīng)準(zhǔn)備多少個(gè)環(huán)保購(gòu)物袋?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某沙漠地區(qū)經(jīng)過(guò)治理,生態(tài)系統(tǒng)得到很大改善,野生動(dòng)物數(shù)量有所增加.為調(diào)查該地區(qū)某種野生動(dòng)物的數(shù)量,將其分成面積相近的200個(gè)地塊,從這些地塊中用簡(jiǎn)單隨機(jī)抽樣的方法抽取20個(gè)作為樣區(qū),調(diào)查得到樣本數(shù)據(jù)(xi,yi)(i=1,2,,20),其中xiyi分別表示第i個(gè)樣區(qū)的植物覆蓋面積(單位:公頃)和這種野生動(dòng)物的數(shù)量,并計(jì)算得,,,.

1)求該地區(qū)這種野生動(dòng)物數(shù)量的估計(jì)值(這種野生動(dòng)物數(shù)量的估計(jì)值等于樣區(qū)這種野生動(dòng)物數(shù)量的平均數(shù)乘以地塊數(shù));

2)求樣本(xiyi)(i=1,2,20)的相關(guān)系數(shù)(精確到0.01);

3)根據(jù)現(xiàn)有統(tǒng)計(jì)資料,各地塊間植物覆蓋面積差異很大.為提高樣本的代表性以獲得該地區(qū)這種野生動(dòng)物數(shù)量更準(zhǔn)確的估計(jì),請(qǐng)給出一種你認(rèn)為更合理的抽樣方法,并說(shuō)明理由.

附:相關(guān)系數(shù)r=,≈1.414.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐中,四邊形為矩形,,.

(1)求證:平面;

(2)設(shè),求平面與平面所成的二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,,分別為的左、右頂點(diǎn).

1)求的方程;

2)若點(diǎn)上,點(diǎn)在直線上,且,,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】半正多面體亦稱(chēng)阿基米德多面體,是由邊數(shù)不全相同的正多邊形為面的多面體,體現(xiàn)了數(shù)學(xué)的對(duì)稱(chēng)美.如圖,將正方體沿交于一頂點(diǎn)的三條棱的中點(diǎn)截去一個(gè)三棱錐,如此共可截去八個(gè)三棱錐,得到一個(gè)有十四個(gè)面的半正多面體,它們的棱長(zhǎng)都相等,其中八個(gè)為正三角形,六個(gè)為正方形,稱(chēng)這樣的半正多面體為二十四等邊體.若二十四等邊體的棱長(zhǎng)為2,則其體積為______;若其各個(gè)頂點(diǎn)都在同一個(gè)球面上,則該球的表面積為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(Ⅰ)若,解不等式;

(Ⅱ)若不等式至少有一個(gè)負(fù)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20194月,河北、遼寧、江蘇、福建、湖北、湖南、廣東、重慶等8省市發(fā)布高考綜合改革實(shí)施方案,決定從2018年秋季入學(xué)的高中一年級(jí)學(xué)生開(kāi)始實(shí)施高考模式.所謂,即“3”是指考生必選語(yǔ)文、數(shù)學(xué)、外語(yǔ)這三科;“1”是指考生在物理、歷史兩科中任選一科;“2”是指考生在生物、化學(xué)、思想政治、地理四科中任選兩科.

1)若某考生按照模式隨機(jī)選科,求選出的六科中含有語(yǔ)文,數(shù)學(xué),外語(yǔ),物理,化學(xué)的概率.

2)新冠疫情期間,為積極應(yīng)對(duì)新高考改革,某地高一年級(jí)積極開(kāi)展線上教學(xué)活動(dòng).教育部門(mén)為了解線上教學(xué)效果,從當(dāng)?shù)夭煌瑢哟蔚膶W(xué)校中抽取高一學(xué)生2500名參加語(yǔ)數(shù)外的網(wǎng)絡(luò)測(cè)試,并給前400名頒發(fā)榮譽(yù)證書(shū),假設(shè)該次網(wǎng)絡(luò)測(cè)試成績(jī)服從正態(tài)分布,且滿分為450.

①考生甲得知他的成績(jī)?yōu)?/span>270分,考試后不久了解到如下情況:此次測(cè)試平均成績(jī)?yōu)?/span>171分,351分以上共有57,請(qǐng)用你所學(xué)的統(tǒng)計(jì)知識(shí)估計(jì)甲能否獲得榮譽(yù)證書(shū),并說(shuō)明理由;

②考生丙得知他的實(shí)際成績(jī)?yōu)?/span>430分,而考生乙告訴考生丙:這次測(cè)試平均成績(jī)?yōu)?/span>201分,351分以上共有57,請(qǐng)結(jié)合統(tǒng)計(jì)學(xué)知識(shí)幫助丙同學(xué)辨別乙同學(xué)信息的真?zhèn),并說(shuō)明理由.

附:;

;

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)討論的單調(diào)性;

2)當(dāng)時(shí),證明:

i

ii)證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案