【題目】已知橢圓的離心率為,,分別為的左、右頂點(diǎn).
(1)求的方程;
(2)若點(diǎn)在上,點(diǎn)在直線上,且,,求的面積.
【答案】(1);(2).
【解析】
(1)因?yàn)?/span>,可得,,根據(jù)離心率公式,結(jié)合已知,即可求得答案;
(2)點(diǎn)在上,點(diǎn)在直線上,且,,過點(diǎn)作軸垂線,交點(diǎn)為,設(shè)與軸交點(diǎn)為,可得,可求得點(diǎn)坐標(biāo),求出直線的直線方程,根據(jù)點(diǎn)到直線距離公式和兩點(diǎn)距離公式,即可求得的面積.
(1)
,,
根據(jù)離心率,
解得或(舍),
的方程為:,
即;
(2)不妨設(shè),在x軸上方
點(diǎn)在上,點(diǎn)在直線上,且,,
過點(diǎn)作軸垂線,交點(diǎn)為,設(shè)與軸交點(diǎn)為
根據(jù)題意畫出圖形,如圖
,,,
又,,
,
根據(jù)三角形全等條件“”,
可得:,
,
,
,
設(shè)點(diǎn)為,
可得點(diǎn)縱坐標(biāo)為,將其代入,
可得:,
解得:或,
點(diǎn)為或,
①當(dāng)點(diǎn)為時(shí),
故,
,
,
可得:點(diǎn)為,
畫出圖象,如圖
,,
可求得直線的直線方程為:,
根據(jù)點(diǎn)到直線距離公式可得到直線的距離為:,
根據(jù)兩點(diǎn)間距離公式可得:,
面積為:;
②當(dāng)點(diǎn)為時(shí),
故,
,
,
可得:點(diǎn)為,
畫出圖象,如圖
,,
可求得直線的直線方程為:,
根據(jù)點(diǎn)到直線距離公式可得到直線的距離為:,
根據(jù)兩點(diǎn)間距離公式可得:,
面積為:,
綜上所述,面積為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(Ⅰ)求曲線的直角坐標(biāo)方程和直線的普通方程;
(Ⅱ)若直線與曲線相交于, 兩點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C1:(a>b>0)的右焦點(diǎn)F與拋物線C2的焦點(diǎn)重合,C1的中心與C2的頂點(diǎn)重合.過F且與x軸重直的直線交C1于A,B兩點(diǎn),交C2于C,D兩點(diǎn),且|CD|=|AB|.
(1)求C1的離心率;
(2)若C1的四個(gè)頂點(diǎn)到C2的準(zhǔn)線距離之和為12,求C1與C2的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱錐中,側(cè)面是邊長為的正三角形,,平面平面,把平面沿旋轉(zhuǎn)至平面的位置,記點(diǎn)旋轉(zhuǎn)后對應(yīng)的點(diǎn)為(不在平面內(nèi)),、分別是、的中點(diǎn).
(1)求證:;
(2)求三棱錐的體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為拋物線的焦點(diǎn),過的動(dòng)直線交拋物線于,兩點(diǎn).當(dāng)直線與軸垂直時(shí),.
(1)求拋物線的方程;
(2)設(shè)直線的斜率為1且與拋物線的準(zhǔn)線相交于點(diǎn),拋物線上存在點(diǎn)使得直線,,的斜率成等差數(shù)列,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面ABCD為矩形,點(diǎn)E在PA線段上,PC平面BDE
(1)請確定點(diǎn)E的位置;并說明理由.
(2)若是等邊三角形,, 平面PAD平面ABCD,四棱錐的體積為,求點(diǎn)E到平面PCD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系.直線的參數(shù)方程為(為參數(shù)),圓的參數(shù)方程為(為參數(shù)).
(1)寫出直線的普通方程和圓的極坐標(biāo)方程;
(2)已知點(diǎn),直線與圓交于,兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在R上的奇函數(shù),當(dāng)時(shí),,則下列命題正確的是( )
A.當(dāng)時(shí),
B.函數(shù)有3個(gè)零點(diǎn)
C.的解集為
D.,都有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程是(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)曲線的普通方程和直線的直角坐標(biāo)方程;
(2)求曲線上的點(diǎn)到直線的距離的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com