【題目】國際奧委會將于2017年9月15日在秘魯利馬召開130次會議決定2024年第33屆奧運會舉辦地,目前德國漢堡,美國波士頓等申辦城市因市民擔心賽事費用超支而相繼退出,某機構(gòu)為調(diào)查我國公民對申辦奧運會的態(tài)度,選了某小區(qū)的100位居民調(diào)查結(jié)果統(tǒng)計如下:

支持

不支持

合計

年齡不大于50歲

80

年齡大于50歲

10

合計

70

100

(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;

(2)能否在犯錯誤的概率不超過5%的前提下認為不同年齡與支持申辦奧運有關(guān)?

(3)已知在被調(diào)查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現(xiàn)從這5名女性中隨機抽取3人,求至多有1位教師的概率.

附: , ,

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

【答案】(1)見解析;(2)不超過5%的前提下認為不同年齡與支持申辦奧運有關(guān);(3)

【解析】

(1)根據(jù)表中的合計人數(shù),就可以得出答案。

(2)由表中數(shù)據(jù),按照公式可以算出的值,可以得出答案。

(3)從5人任意抽3人的所有等可能事件有:共10個,其中至多1位教師,有7個基本事件,所以所求概率是.

(1)

支持

不支持

合計

年齡不大于50歲

20

60

80

年齡大于50歲

10

10

20

合計

30

70

100

(2)

所以能在犯錯誤的概率不超過5%的前提下認為不同年齡與支持申辦奧運有關(guān);

(3)記5人為 ,其中表示教師,從5人任意抽3人的所有等可能事件是:共10個,其中至多1位教師有7個基本事件: ,所以所求概率是.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】2017年被稱為“新高考元年”,隨著上海、浙江兩地順利實施“語數(shù)外+3”新高考方案,新一輪的高考改革還將繼續(xù)在全國推進。遼寧地區(qū)也將于2020年開啟新高考模式,今年秋季入學 的高一新生將面臨從物理、化學、生物、政治、歷史、地理等6科中任選三科(共20種選法)作為 自己將來高考“語數(shù)外+3 ”新高考方案中的“3”。某地區(qū)為了順利迎接新高考改革,在某學校理科班的200名學生中進行了“學生模擬選科數(shù)據(jù)”調(diào)查,每個學生只能從表格中的20種課程 組合選擇一種學習。模擬選課數(shù)據(jù)統(tǒng)計如下表:

序號

1

2

3

4

5

6

7

組合學科

物化生

物化政

物化歷

物化地

物生政

物生歷

物生地

人數(shù)

20人

5人

10人

10人

10人

15人

10人

序號

8

9

10

11

12

13

14

組合學科

物政歷

物政地

物歷地

化生政

化生歷

化生地

化政歷

人數(shù)

5人

0人

5人

...

40人

...

...

序號

15

16

17

18

19

20

組合學科

化政地

化歷地

生政歷

生政地

生歷地

政歷地

總計

人數(shù)

...

...

...

...

...

...

200人

為了解學生成績與學生模擬選課情之間的關(guān)系,用分層抽樣的方法從這200名學生中抽取40人的樣本進行分析.

(1)樣本中選擇組合12號“化生歷”的有多少人?樣本中選擇學習物理的有多少人?

(2)從樣本選擇學習地理且學習物理的學生中隨機抽取3人,求這3人中至少有1人還要學習生物的概率;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某校甲、乙、丙三個年級的學生志愿者人數(shù)分別為240,160,160.現(xiàn)采用分層抽樣的方法從中抽。访瑢W去某敬老院參加獻愛心活動.

(Ⅰ)應(yīng)從甲、、丙三個年級的學生志愿者中分別抽取多少人?

設(shè)抽出的7名同學分別用A,BC,DE,F,G表示,現(xiàn)從中隨機抽取2名同學承擔敬老院的衛(wèi)生工作.

(i)試用所給字母列舉出所有可能的抽取結(jié)果;

(ii)設(shè)M為事件“抽取的2名同學來自同一年級”,求事件M發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD,NPC的中點.

)證明MN∥平面PAB;

)求直線AN與平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某教育主管部門到一所中學檢查高三年級學生的體質(zhì)健康情況,從中抽取了名學生的體質(zhì)測試成績,得到的頻率分布直方圖如圖1所示,樣本中前三組學生的原始成績按性別分類所得的莖葉圖如圖2所示.

(Ⅰ)求, , 的值;

(Ⅱ)估計該校高三學生體質(zhì)測試成績的平均數(shù)和中位數(shù);

(Ⅲ)若從成績在的學生中隨機抽取兩人重新進行測試,求至少有一名男生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直角, , 分別是邊的中點,沿折起至,.

(1)求四棱錐的體積;

(2)求證:平面⊥平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,,∠ABC=BCD=90°,EPB的中點。

1)證明:CE∥面PAD.

2)若直線CE與底面ABCD所成的角為45°,求四棱錐P-ABCD的體積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價格依次為60/盒、65/盒、80/盒、90/盒.為增加銷量,李明對這四種水果進行促銷:一次購買水果的總價達到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會得到支付款的80%

①當x=10時,顧客一次購買草莓和西瓜各1盒,需要支付__________元;

②在促銷活動中,為保證李明每筆訂單得到的金額均不低于促銷前總價的七折,則x的最大值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了貫徹落實中央省市關(guān)于新型冠狀病毒肺炎疫情防控工作要求,積極應(yīng)對新型冠狀病毒疫情,切實做好2020年春季開學工作,保障校園安全穩(wěn)定,普及防控知識,確保師生生命安全和身體健康.某校開學前,組織高三年級800名學生參加了“疫情防控”網(wǎng)絡(luò)知識競賽(滿分150分).已知這800名學生的成績均不低于90分,將這800名學生的成績分組如下:第一組,第二組,第三組,第四組,第五組,第六組,得到的頻率分布直方圖如圖所示.

1)求的值并估計這800名學生的平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);

2)該!叭悍廊嚎亍倍讲榻M為更好地督促高三學生的“個人防控”,準備從這800名學生中取2名學生參與督查工作,其取辦法是:先在第二組第五組第六組中用分層抽樣的方法抽取6名學生,再從這6名學生中隨機抽取2名學生.記這2名學生的競賽成績分別為.求事件的概率.

查看答案和解析>>

同步練習冊答案