【題目】已知函數(shù)f(x)=(x+1)lnx,g(x)=a(x﹣1)(a∈R).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)≥g(x)對任意的x∈[1,+∞)恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)求證:ln2ln3…lnn> (n≥2,n∈N+).
【答案】解:(Ⅰ)f(x)的定義域?yàn)椋?,+∞),f′(x)=lnx+ +1,
設(shè)g(x)=f′(x),g′(x)= ,
令g′(x)>0,得x>1,g′(x)<0,得0<x<1,
∴g(x)在(0,1)遞減,在(1,+∞)遞增,g(x)min=g(1)=2,
∴f′(x)>0在(0,+∞)上恒成立,
∴f(x)的遞增區(qū)間為(0,+∞),無遞減區(qū)間.
(Ⅱ)設(shè)h(x)=(x﹣1)lnx﹣ax+a,
由(Ⅰ)知:h′(x)=lnx+ =1﹣a=g(x)﹣a,
g(x)在(1,+∞)遞增,∴g(x)≥g(1)=2,
(i)當(dāng)a≤2時(shí),h′(x)≥0,h(x)在[1,+∞)遞增,
∴h(x)≥h(1)=0,滿足題意.
(ii)當(dāng)a>2時(shí),設(shè)ω(x)=h′(x),ω′(x)= ,
當(dāng)x≥1時(shí),ω′(x)≥0,∴ω(x)在[1,+∞)遞增,
ω(1)=2﹣a<0,ω(ea)=1+e﹣a>0,
∴x0∈(1,ea),使ω(x0)=0,∵ω(x)在[1,+∞)遞增,
∴x∈(1,x0),ω(x)<0,即h′(x)<0,
∴當(dāng)x∈(1,x0時(shí),h(x)<h(1)=0,不滿足題意.
綜上,a的取值范圍為(﹣∞,2].
(Ⅲ)由(Ⅱ)知,令a=2,(x+1)lnx≥2(x﹣1),
∴x≥1,lnx≥ (當(dāng)且僅當(dāng)x=1取“=”),
令x=n(n≥2,n∈N*)得lnn> ,
即ln2> ,ln3> ,ln4> ,…,
ln(n﹣2)> ,ln(n﹣1)> ,lnn> ,
將上述n﹣1個(gè)式子相乘得:ln2ln3…lnn> = ,
∴原命題得證
【解析】(Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;(Ⅱ)求出h(x)的導(dǎo)數(shù),通過討論a的范圍,結(jié)合函數(shù)的單調(diào)性確定a的具體范圍即可;(Ⅲ)得到lnx≥ ,令x=n(n≥2,n∈N*),得lnn> ,x取不同的值,相乘即可.
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí)點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某保險(xiǎn)的基本保費(fèi)為a(單位:元),繼續(xù)購買該保險(xiǎn)的投保人成為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:
上年度出險(xiǎn)次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
保費(fèi) | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
設(shè)該險(xiǎn)種一續(xù)保人一年內(nèi)出險(xiǎn)次數(shù)與相應(yīng)概率如下:
一年內(nèi)出險(xiǎn)次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
概率 | 0.30 | 0.15 | 0.20 | 0.20 | 0.10 | 0.05 |
(Ⅰ)求一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)的概率;
(Ⅱ)若一續(xù)保人本年度的保費(fèi)高于基本保費(fèi),求其保費(fèi)比基本保費(fèi)高出60%的概率;
(Ⅲ)求續(xù)保人本年度的平均保費(fèi)與基本保費(fèi)的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為 (其中t為參數(shù)).現(xiàn)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=6cosθ.
(Ⅰ) 寫出直線l普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ) 過點(diǎn)M(﹣1,0)且與直線l平行的直線l1交C于A,B兩點(diǎn),求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex+ax2﹣ex,a∈R.
(Ⅰ)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)試確定a的取值范圍,使得曲線y=f(x)上存在唯一的點(diǎn)P,曲線在該點(diǎn)處的切線與曲線只有一個(gè)公共點(diǎn)P.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:如果函數(shù)y=f(x)在定義域內(nèi)給定區(qū)間[a,b]上存在x0(a<x0<b),滿足f(x0)= ,則稱函數(shù)y=f(x)是[a,b]上的“平均值函數(shù)”,x0是它的一個(gè)均值點(diǎn).例如y=|x|是[﹣2,2]上的平均值函數(shù),0就是它的均值點(diǎn).若函數(shù)f(x)=x2﹣mx﹣1是[﹣1,1]上的“平均值函數(shù)”,則實(shí)數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A、B、C是圓O上的三個(gè)點(diǎn),CO的延長線與線段BA的延長線交于圓外一點(diǎn).若 ,其中m,n∈R.則m+n的取值范圍是( )
A.(0,1)
B.(﹣1,0)
C.(1,+∞)
D.(﹣∞,﹣1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義域?yàn)椋?,+∞)的單調(diào)函數(shù),若對任意的x∈(0,+∞),都有 ,且方程|f(x)﹣3|=x3﹣6x2+9x﹣4+a在區(qū)間(0,3]上有兩解,則實(shí)數(shù)a的取值范圍是( )
A.0<a≤5
B.a<5
C.0<a<5
D.a≥5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,AB⊥平面BB1C1C,∠BCC1= ,AB=BB1=2,BC=1,D為CC1中點(diǎn).
(1)求證:DB1⊥平面ABD;
(2)求二面角A﹣B1D﹣A1的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四個(gè)命題中其中真命題個(gè)數(shù)是( ) ①為了了解800名學(xué)生的成績,打算從中抽取一個(gè)容量為40的樣本,考慮用系統(tǒng)抽樣,則分段的間隔k為40;
②線性回歸直線 = x+ 恒過樣本點(diǎn)的中心( , );
③隨機(jī)變量ξ服從正態(tài)分布N(2,σ2)(σ>0),若在(﹣∞,1)內(nèi)取值的概率為0.1,則在(2,3)內(nèi)的概率為0.4;
④若事件M和N滿足關(guān)系P(M∪N)=P(M)+P(N),則事件M和N互斥.
A.0
B.1
C.2
D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com