【題目】以下四個(gè)命題中其中真命題個(gè)數(shù)是( ) ①為了了解800名學(xué)生的成績(jī),打算從中抽取一個(gè)容量為40的樣本,考慮用系統(tǒng)抽樣,則分段的間隔k為40;
②線性回歸直線 = x+ 恒過(guò)樣本點(diǎn)的中心( , );
③隨機(jī)變量ξ服從正態(tài)分布N(2,σ2)(σ>0),若在(﹣∞,1)內(nèi)取值的概率為0.1,則在(2,3)內(nèi)的概率為0.4;
④若事件M和N滿足關(guān)系P(M∪N)=P(M)+P(N),則事件M和N互斥.
A.0
B.1
C.2
D.3
【答案】D
【解析】解:①為了了解800名學(xué)生的成績(jī),打算從中抽取一個(gè)容量為40的樣本,考慮用系統(tǒng)抽樣,則分段的間隔k為 =20,故①錯(cuò);②線性回歸直線 = x+ 恒過(guò)樣本點(diǎn)的中心( , ),故②對(duì);③隨機(jī)變量ξ服從正態(tài)分布N(2,σ2)(σ>0),
若在(﹣∞,1)內(nèi)取值的概率為0.1,則在(1,2)內(nèi)的概率為0.5﹣0.1=0.4,
可得在(2,3)內(nèi)的概率為0.4,故③對(duì);④若事件M和N滿足關(guān)系P(M∪N)=P(M)+P(N),
由P(M∪N)=P(M)+P(N)+P(M∩N),可得P(M∩N)=0,
即有M,N不可能同時(shí)發(fā)生,
所以事件M與N的關(guān)系是互斥的.故④對(duì).
故選:D.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用命題的真假判斷與應(yīng)用的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(x+1)lnx,g(x)=a(x﹣1)(a∈R).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)≥g(x)對(duì)任意的x∈[1,+∞)恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)求證:ln2ln3…lnn> (n≥2,n∈N+).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù)x,y滿足x2+y2﹣6x+8y﹣11=0,則 的最大值= , |3x+4y﹣28|的最小值=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足:a1=1,an+1﹣ansin2θ=sin2θcos2nθ.
(Ⅰ)當(dāng)θ= 時(shí),求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)在(Ⅰ)的條件下,若數(shù)列{bn}滿足bn=sin ,Sn為數(shù)列{bn}的前n項(xiàng)和,求證:對(duì)任意n∈N* , Sn<3+ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,點(diǎn)E是BC邊的中點(diǎn),將△ABD沿BD折起,使平面ABD⊥平面BCD,連接AE,AC,DE,得到如圖2所示的幾何體.
(Ⅰ)求證:AB⊥平面ADC;
(Ⅱ)若AD=1,二面角C﹣AB﹣D的平面角的正切值為 ,求二面角B﹣AD﹣E的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c分別是△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊,且滿足(2b﹣a)cosC=ccosA.
(Ⅰ)求角C的大。
(Ⅱ)設(shè)y=﹣4 sin2 +2sin(C﹣B),求y的最大值并判斷當(dāng)y取得最大值時(shí)△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列判斷正確的是( )
A.若事件A與事件B互斥,則事件A與事件B對(duì)立
B.函數(shù)y= (x∈R)的最小值為2
C.若直線(m+1)x+my﹣2=0與直線mx﹣2y+5=0互相垂直,則m=1
D.“p∧q為真命題”是“p∨q為真命題”的充分不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ,直線l:x﹣ty﹣2=0.
(1)若直線l與曲線y=f(x)有且僅有一個(gè)公共點(diǎn),求公共點(diǎn)橫坐標(biāo)的值;
(2)若0<m<n,m+n≤2,求證:f(m)>f(n).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸)中,圓C的方程為ρ=6sinθ.
(1)求圓C的直角坐標(biāo)方程;
(2)若點(diǎn)P(1,2),設(shè)圓C與直線l交于點(diǎn)A,B,求|PA|+|PB|的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com