【題目】已知正項(xiàng)數(shù)列滿足4Sn=an2+2an+1.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn

【答案】(1) ; (2) .

【解析】

(1)由4Sn=an2+2an+1,可知當(dāng)n≥2時(shí),4Sn1=an12+2an1+1,兩式作差可得an-an-1=2(n≥2),再求出首項(xiàng),代入等差數(shù)列的通項(xiàng)公式可得數(shù)列{an}的通項(xiàng)公式;
(2)把數(shù)列{an}的通項(xiàng)公式代入bn=,再由裂項(xiàng)相消法求數(shù)列{bn}的前n項(xiàng)和Tn

(1)4Sn=an2+2an+1,可知當(dāng)n≥2時(shí),4Sn1=an12+2an1+1,

兩式作差得an-an-1=2(n≥2),

4S1=4a1=a12+2a1+1,得a1=1,

∴an=2n-1;

(2)由(1)知,bn=

∴Tn=b1+b2+…+bn=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的左焦點(diǎn)為,過點(diǎn)的直線交橢圓于,兩點(diǎn),的最大值為,的最小值為,滿足.

(1)若線段垂直于軸時(shí),,求橢圓的方程;

(2)設(shè)線段的中點(diǎn)為,的垂直平分線與軸和軸分別交于兩點(diǎn),是坐標(biāo)原點(diǎn),記的面積為,的面積為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)為圓上一動(dòng)點(diǎn),軸于點(diǎn),記線段的中點(diǎn)的運(yùn)動(dòng)軌跡為曲線.

1)求曲線的方程;

2)直線經(jīng)過定點(diǎn),且與曲線交于兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,,,是同一平面內(nèi)的三條平行直線, 之間的距離是1,之間的距離是2,三角形的三個(gè)頂點(diǎn)分別在,.

1)若為正三角形,求其邊長;

2)若是以B為直角頂點(diǎn)的直角三角形,求其面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的一個(gè)頂點(diǎn)為拋物線的頂點(diǎn), , 兩點(diǎn)都在拋物線上,且.

(1)求證:直線必過一定點(diǎn);

(2)求證: 面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2016·雅安高一檢測)已知函數(shù)f(x)=2x的定義域是[0,3],設(shè)g(x)=f(2x)-f(x+2),

(1)求g(x)的解析式及定義域;

(2)求函數(shù)g(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某街道居委會(huì)擬在地段的居民樓正南方向的空白地段上建一個(gè)活動(dòng)中心,其中米.活動(dòng)中心東西走向,與居民樓平行. 從東向西看活動(dòng)中心的截面圖的下部分是長方形,上部分是以為直徑的半圓. 為了保證居民樓住戶的采光要求,活動(dòng)中心在與半圓相切的太陽光線照射下落在居民樓上的影長不超過米,其中該太陽光線與水平線的夾角滿足.

1)若設(shè)計(jì)米,米,問能否保證上述采光要求?

2)在保證上述采光要求的前提下,如何設(shè)計(jì)的長度,可使得活動(dòng)中心的截面面積最大?(注:計(jì)算中3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)完成表一中對(duì)應(yīng)的值,并在坐標(biāo)系中用描點(diǎn)法作出函數(shù)的圖象:(表一)

0.25

0.5

0.75

1

1.25

1.5

0.08

1.82

2.58

2)根據(jù)你所作圖象判斷函數(shù)的單調(diào)性,并用定義證明;

3)說明方程的根在區(qū)間存在的理由,并從表二中求使方程的根的近似值達(dá)到精確度為0.01時(shí)運(yùn)算次數(shù)的最小值并求此時(shí)方程的根的近似值,且說明理由.

(表二)二分法的結(jié)果

運(yùn)算次數(shù)的值

左端點(diǎn)

右端點(diǎn)

-0.537

0.6

0.75

0.08

-0.217

0.675

0.75

0.08

-0.064

0.7125

0.75

0.08

-0.064

0.7125

0.73125

0.011

-0.03

0.721875

0.73125

0.011

-0.01

0.7265625

0.73125

0.011

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù)),點(diǎn)的極坐標(biāo)為設(shè)直線與曲線相交于兩點(diǎn)

1寫出曲線的直角坐標(biāo)方程和直線的普通方程;

2的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案