【題目】某水產(chǎn)試驗廠實行某種魚的人工孵化,10 000個魚卵能孵化8 513尾魚苗,根據(jù)概率的統(tǒng)計定義解答下列問題:

(1)這種魚卵的孵化率(孵化概率)是多少?

(2)30 000個魚卵大約能孵化多少尾魚苗?

(3)要孵化5 000尾魚苗,大概需要多少個魚卵?(精確到百位)

【答案】(1)0.8513; (2) 25 539; (3)5 900

【解析】試題分析:(1)根據(jù)概率的統(tǒng)計定義,可得這種魚卵的孵化概率;(2)30000個魚卵大約能孵化魚苗尾數(shù)為:30000×孵化率.

試題解析:

(1)這種魚卵的孵化率為=0.851 3.

(2)30 000個魚卵大約能孵化30 000×=25 539 尾魚苗.

(3)設(shè)大概需備x個魚卵,由題意知,

解得x=≈5 900.

所以大概需要5 900個魚卵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)。

(Ⅰ)當(dāng)a=2,求函數(shù)fx)的圖象在點(1,f(1) )處的切線方程;

(Ⅱ)當(dāng)a>0時,求函數(shù)fx)的單調(diào)區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機抽取一個年份,對西安市該年4月份的天氣情況進行統(tǒng)計,結(jié)果如下:

日期

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

天氣

日期

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

天氣

(1)4月份任取一天,估計西安市在該天不下雨的概率;

(2)西安市某學(xué)校擬從4月份的一個晴天開始舉行連續(xù)2天的運動會,估計運動會期間不下雨的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人做游戲,下列游戲不公平的是(  )

A. 拋擲一枚骰子,向上的點數(shù)為奇數(shù)則甲獲勝,向上的點數(shù)為偶數(shù)則乙獲勝

B. 同時拋擲兩枚硬幣,恰有一枚正面向上則甲獲勝,兩枚都正面向上則乙獲勝

C. 從一副不含大小王的撲克牌中抽一張,撲克牌是紅色的則甲獲勝,撲克牌是黑色的則乙獲勝

D. 甲、乙兩人各寫一個數(shù)字12,如果兩人寫的數(shù)字相同甲獲勝,否則乙獲勝

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點為,且點在橢圓上.

求橢圓的標(biāo)準方程;

已知動直線過點且與橢圓交于兩點.試問軸上是否存在定點,使得恒成立?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x=3是函數(shù)f(x)=aln(1+x)+x2-10x的一個極值點.

(1)求a

(2)求函數(shù)f(x)的單調(diào)區(qū)間和極值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下五個命題:

①在線性回歸模型中, 表示解釋變量對于預(yù)報變量變化的貢獻率,在對女大學(xué)生的身高預(yù)報體重的回歸分析數(shù)據(jù)中,算得,表明“女大學(xué)生的體重差異有64%是由身高引起的”

②隨機變量的方差和標(biāo)準差都反映了隨機變量取值偏離于均值的平均程度,方差或標(biāo)準差越小,則隨機變量偏離于均值的平均程度越大;

③正態(tài)曲線關(guān)于直線對稱,這個曲線只有當(dāng)時,才在軸上方;

④正態(tài)曲線的對稱軸由確定,當(dāng)一定時,曲線的形狀由決定,并且越大,曲線越“矮胖”;

⑤若隨機變量,且;

其中正確命題的序號是

A. ②③ B. ①④⑤ C. ①④ D. ①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) ,已知曲線在點處的切線與直線平行.

(Ⅰ)若方程內(nèi)存在唯一的根,求出的值;

(Ⅱ)設(shè)函數(shù)表示中的較小值),求的最大值.

查看答案和解析>>

同步練習(xí)冊答案