【題目】甲、乙兩人做游戲,下列游戲不公平的是(  )

A. 拋擲一枚骰子,向上的點數(shù)為奇數(shù)則甲獲勝,向上的點數(shù)為偶數(shù)則乙獲勝

B. 同時拋擲兩枚硬幣,恰有一枚正面向上則甲獲勝,兩枚都正面向上則乙獲勝

C. 從一副不含大小王的撲克牌中抽一張,撲克牌是紅色的則甲獲勝,撲克牌是黑色的則乙獲勝

D. 甲、乙兩人各寫一個數(shù)字12,如果兩人寫的數(shù)字相同甲獲勝,否則乙獲勝

【答案】B

【解析】對于A:拋擲一枚骰子,向上的點數(shù)為奇數(shù)的概率為,向上的點數(shù)為偶數(shù)的概率為故A公平;

對于B中同時拋擲兩枚硬幣,恰有一枚正面向上的概率為,兩枚都正面向上的概率為 所以對乙不公平

對于C:從一副不含大小王的撲克牌中抽一張,撲克牌是紅色的概率為,撲克牌是黑色的概率為,所以公平;

對于D:甲、乙兩人各寫一個數(shù)字1或2,如果兩人寫的數(shù)字相同的概率為,數(shù)字不同的概率為,所以公平;

故選B

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)分別加上2、5、13后成為等比數(shù)列{bn}中的b3、b4、b5.

(1)求數(shù)列{bn}的通項公式;

(2)數(shù)列{bn}的前n項和為Sn,求證:數(shù)列是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】上半年產(chǎn)品產(chǎn)量與單位成本資料如下

月份

產(chǎn)量/千件

單位成本/

1

2

73

2

3

72

3

4

71

4

3

73

5

4

69

6

5

68

且已知產(chǎn)量x與單位成本y具有線性相關(guān)關(guān)系.

(1)求出回歸方程.

(2)指出產(chǎn)量每增加1 000件時單位成本平均變動多少?

(3)假定產(chǎn)量為6 000件時,單位成本為多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù)

單價x/

8

8.2

8.4

8.6

8.8

9

銷量y/

90

84

83

80

75

68

(1)求線性回歸方程=x+,其中=-20, =- .

(2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4/,為使工廠獲得最大利潤,該產(chǎn)品的單價應(yīng)定為多少元?(利潤=銷售收入-成本)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在調(diào)查運動員是否服用過興奮劑的時候,給出兩個問題作答,無關(guān)緊要的問題是:“你的身份證號碼的尾數(shù)是奇數(shù)嗎?”敏感的問題是:“你服用過興奮劑嗎?”然后要求被調(diào)查的運動員擲一枚硬幣,如果出現(xiàn)正面,就回答第一個問題,否則回答第二個問題.由于回答哪一個問題只有被測試者自己知道,所以應(yīng)答者一般樂意如實地回答問題.若我們把這種方法用于300個被調(diào)查的運動員,得到80的回答,則這群運動員中服用過興奮劑的百分率大約為_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某水產(chǎn)試驗廠實行某種魚的人工孵化,10 000個魚卵能孵化8 513尾魚苗,根據(jù)概率的統(tǒng)計定義解答下列問題:

(1)這種魚卵的孵化率(孵化概率)是多少?

(2)30 000個魚卵大約能孵化多少尾魚苗?

(3)要孵化5 000尾魚苗,大概需要多少個魚卵?(精確到百位)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形, , ,平面平面 的中點, 是棱上的點, ,

(1)求證:平面平面;

(2)若二面角大小為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一個轉(zhuǎn)盤游戲,轉(zhuǎn)盤被平均分成10等份(如圖所示),轉(zhuǎn)動轉(zhuǎn)盤,當轉(zhuǎn)盤停止后,指針指向的數(shù)字即為轉(zhuǎn)出的數(shù)字.游戲規(guī)則如下:兩個人參加,先確定猜數(shù)方案,甲轉(zhuǎn)動轉(zhuǎn)盤,乙猜,若猜出的結(jié)果與轉(zhuǎn)盤轉(zhuǎn)出的數(shù)字所表示的特征相符,則乙獲勝,否則甲獲勝.猜數(shù)方案從以下三種方案中選一種:

A.是奇數(shù)是偶數(shù)

B.4的整數(shù)倍數(shù)不是4的整數(shù)倍數(shù)

C.是大于4的數(shù)不是大于4的數(shù)

請回答下列問題:

(1)如果你是乙,為了盡可能獲勝,你將選擇哪種猜數(shù)方案,并且怎樣猜?為什么?

(2)為了保證游戲的公平性,你認為應(yīng)制定哪種猜數(shù)方案?為什么?

(3)請你設(shè)計一種其他的猜數(shù)方案,并保證游戲的公平性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國際奧委會將于2017年9月15日在秘魯利馬召開130次會議決定2024年第33屆奧運會舉辦地。目前德國漢堡、美國波士頓等申辦城市因市民擔心賽事費用超支而相繼退出。某機構(gòu)為調(diào)查我國公民對申辦奧運會的態(tài)度,選了某小區(qū)的100位居民調(diào)查結(jié)果統(tǒng)計如下:

(1)根據(jù)已有數(shù)據(jù),把表格數(shù)據(jù)填寫完整;

(2)能否在犯錯誤的概率不超過5%的前提下認為不同年齡與支持申辦奧運無關(guān)?

(3)已知在被調(diào)查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現(xiàn)從這5名女性中隨機抽取3人,求至多有1位教師的概率.

附: , .

查看答案和解析>>

同步練習冊答案