【題目】上半年產(chǎn)品產(chǎn)量與單位成本資料如下

月份

產(chǎn)量/千件

單位成本/

1

2

73

2

3

72

3

4

71

4

3

73

5

4

69

6

5

68

且已知產(chǎn)量x與單位成本y具有線性相關關系.

(1)求出回歸方程.

(2)指出產(chǎn)量每增加1 000件時單位成本平均變動多少?

(3)假定產(chǎn)量為6 000件時,單位成本為多少元?

【答案】(1) =x+=-1.82x+77.37;(2) 1.82元; (3) 大約為66.45元

【解析】試題分析:利用一組統(tǒng)計數(shù)據(jù)求回歸直線方程時,需要計算兩個變量的的平均數(shù), 的和,利用最小二乘法公式求出,寫出回歸直線方程;計算自變量為與子自變量為的預測值的差值,就得到產(chǎn)量每增加1 000件時,單位成本平均變動數(shù);把代入回歸直線方程中,計算可得單位成本y的估計值.

試題解析:

利用最小二乘法求出回歸直線方程,再根據(jù)回歸方程進行預測.

(1)n=6 =3.5, =71, =79 xiyi=1 481,

=≈-1.82

=-

=71+1.82×3.5=77.37,

則回歸方程為=x+=-1.82x+77.37.

(2)因為單位成本平均變動=-1.82<0,且產(chǎn)量x的計量單位是千件,所以根據(jù)回歸系數(shù)的意義有產(chǎn)量每增加一個單位即1 000件時,單位成本平均減少1.82.

(3)當產(chǎn)量為6 000件,即x=6時,代入回歸方程,

=77.37-1.82×6=66.45().

即當產(chǎn)量為6 000件時,單位成本大約為66.45元.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 )的離心率為,直線 與以原點為圓心、橢圓的短半軸長為半徑的圓相切.

(1)求橢圓的方程;

(2)過橢圓的左頂點作直線,與圓相交于兩點, ,若是鈍角三角形,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xoy中,直線的參數(shù)方程為t為參數(shù)),P、Q分別為直線x軸、y軸的交點,線段PQ的中點為M

)求直線的直角坐標方程;

)以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,求點M的極坐標和直線OM的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市的3個區(qū)共有高中學生20 0003個區(qū)的高中學生人數(shù)之比為235,現(xiàn)要從所有學生中抽取一個容量為200的樣本,調(diào)查該市高中學生的視力情況,試寫出抽樣過程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知e為自然對數(shù)的底數(shù),設函數(shù),則( ).

A. k=1時,f(x)在x=1處取到極小值 B. k=1時,f(x)在x=1處取到極大值

C. k=2時,f(x)在x=1處取到極小值 D. k=2時,f(x)在x=1處取到極大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,橫、縱坐標均為整數(shù)的點叫做格點.若函數(shù)圖象恰好經(jīng)過k個格點,則稱函數(shù)為k階格點函數(shù).已知函數(shù):

y=sinx; y=cos(x); ③y=ex-1; ④yx2.

其中為一階格點函數(shù)的序號為 (  )

A. ①② B. ②③ C. ①③ D. ②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人做游戲,下列游戲不公平的是(  )

A. 拋擲一枚骰子,向上的點數(shù)為奇數(shù)則甲獲勝,向上的點數(shù)為偶數(shù)則乙獲勝

B. 同時拋擲兩枚硬幣,恰有一枚正面向上則甲獲勝,兩枚都正面向上則乙獲勝

C. 從一副不含大小王的撲克牌中抽一張,撲克牌是紅色的則甲獲勝,撲克牌是黑色的則乙獲勝

D. 甲、乙兩人各寫一個數(shù)字12,如果兩人寫的數(shù)字相同甲獲勝,否則乙獲勝

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代名詞“芻童”原來是草堆的意思,古代用它作為長方體棱臺(上、下底面均為矩形額棱臺)的專用術語,關于“芻童”體積計算的描述,《九章算術》注曰:“倍上表,下表從之,亦倍小表,上表從之,各以其廣乘之,并,以高若深乘之,皆六面一.”其計算方法是:將上底面的長乘二,與下底面的長相加,再與上底面的寬相乘;將下底面的長乘二,與上底面的長相加,再與下底面的寬相乘;把這兩個數(shù)值相加,與高相乘,再取其六分之一,以此算法,現(xiàn)有上下底面為相似矩形的棱臺,相似比為,高為3,且上底面的周長為6,則該棱臺的體積的最大值是( )

A. 14 B. 56 C. D. 63

查看答案和解析>>

同步練習冊答案