【題目】已知圓,圓內(nèi)一點,動圓經(jīng)過點且與圓內(nèi)切.
(1)求圓心的軌跡的方程.
(2)過點且不與坐標軸垂直的直線交曲線于兩點,線段的垂直平分線與軸交于點,求點橫坐標的取值范圍.
【答案】(1)(2)
【解析】
(1)由圓與圓內(nèi)切可得,由橢圓的定義可得軌跡的方程;
(2)設(shè)直線的方程為,與的方程聯(lián)立,消去得:,利用韋達定理,可求出線段的中點坐標,進而可求出垂直平分線的方程為,令,可得點橫坐標為,進而可得取值范圍.
(1)∵圓與圓內(nèi)切,圓的半徑為4,得,而,
∴,∴圓心的軌跡是以為焦點的橢圓.
∴.∴.∴.
∴圓心的軌跡的方程為.
(2)設(shè)直線的斜率為,由直線不與坐標軸垂直,故,直線的方程為,將直線的方程與的方程聯(lián)立得:消得:,
由韋達定理得:,設(shè)線段的中點坐標為,
則.
則垂直平分線的方程為.令,點橫坐標為:,
因為,所以,
故點被坐標的取值范圍是:.
科目:高中數(shù)學 來源: 題型:
【題目】某人利用一根原木制作一件手工作品,該作品由一個球體和一個正四棱柱組成,假定原 木為圓柱體(如圖1),底面半徑為,高為,制作要求如下:首先需將原木切割為兩部分(分別稱為第I圓柱和第II圓柱),要求切面與原木的上下底面平行(不考慮損耗) 然后將第I圓柱切割為一個球體,要求體積最大,將第II圓柱切割為一個正四棱柱,要求正四棱柱的上下底面分別為第II圓柱上下底面圓的內(nèi)接正方形.
(1)當時,若第I圓柱和第II圓柱的體積相等,求該手王作品的體積;
(2)對于給定的和,求手工作品體積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某校甲、乙、丙三個興趣小組的學生人數(shù)分別為36,24,24.現(xiàn)采用分層抽樣的方法從中抽取7人,進行睡眠質(zhì)量的調(diào)查.
(1)應(yīng)從甲、乙、丙三個興趣小組的學生中分別抽取多少人?
(2)若抽出的7人中有3人睡眠不足,4人睡眠充足,現(xiàn)從這7人中隨機抽取3人做進一步的身體檢查.用表示抽取的3人中睡眠充足的學生人數(shù),求隨機變量的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓的半徑為,圓心在軸的正半軸,直線被圓截得的弦長分別為,且.
(1)求圓的方程;
(2)問與直線,軸,軸都相切的圓是否存在,若存在請求出所有滿足條件的圓的方程,若不存在也請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線E:()的焦點為F,圓C:,點為拋物線上一動點.當時,的面積為.
(1)求拋物線E的方程;
(2)若,過點P作圓C的兩條切線分別交y軸于M,N兩點,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圓周率是一個在數(shù)學及物理學中普遍存在的數(shù)學常數(shù),它既常用又神秘,古今中外很多數(shù)學家曾研究它的計算方法.下面做一個游戲:讓大家各自隨意寫下兩個小于1的正數(shù)然后請他們各自檢查一下,所得的兩數(shù)與1是否能構(gòu)成一個銳角三角形的三邊,最后把結(jié)論告訴你,只需將每個人的結(jié)論記錄下來就能算出圓周率的近似值.假設(shè)有個人說“能”,而有個人說“不能”,那么應(yīng)用你學過的知識可算得圓周率的近似值為()
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣a|,g(x)=x+1.
(1)若a=1,求不等式f(x)≤1的解集;
(2)對任意的x∈R,f(x)+|g(x)|≥a2+2a(a>0)恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若曲線在點處的切線與x軸平行,求a的值;
(Ⅱ)若在處取得極大值,求a的取值范圍;
(Ⅲ)當a=2時,若函數(shù)有3個零點,求m的取值范圍.(只需寫出結(jié)論)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com