在數(shù)列中,為常數(shù),,且成公比不等于1的等比數(shù)列.
(Ⅰ)求的值;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和。

(1)
(2)

解析試題分析:解:(Ⅰ)∵為常數(shù),∴  …..(2分)
.
成等比數(shù)列,∴,解得    ….(4分)
當(dāng)時,不合題意,舍去. ∴.     (5分)
(Ⅱ)由(Ⅰ)知,               (6分)
  (9分)

              …(12分)
考點(diǎn):等差數(shù)列;等比數(shù)列
點(diǎn)評:考查了等差、等比數(shù)列的證明,解題的關(guān)鍵在于掌握定理公式,以及等式之間的轉(zhuǎn)換,屬于中檔題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列是首項(xiàng)為1,公差為的等差數(shù)列,數(shù)列是首項(xiàng)為1,公比為的等比數(shù)列.
(1)若,求數(shù)列的前項(xiàng)和;
(2)若存在正整數(shù),使得.試比較的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

,是方程的兩根, 數(shù)列是公差為正的等差數(shù)列,數(shù)列的前項(xiàng)和為,且.
(1)求數(shù)列,的通項(xiàng)公式;
(2)記=,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,滿足,,且,成等差數(shù)列.
(1)求,的值;
(2) 是等比數(shù)列
(3)證明:對一切正整數(shù),有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為.已知,
(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)記為數(shù)列的前項(xiàng)和,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和。
(1)求;
(2)證明:是等比數(shù)列;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)如圖,9個正數(shù)排列成3行3列,其中每一行的數(shù)成等差數(shù)列,每一列的數(shù)成等比數(shù)列,且所有的公比都是,已知,又設(shè)第一行數(shù)列的公差為.

(Ⅰ)求出, ;
(Ⅱ)若保持這9個數(shù)的位置不動,按照上述規(guī)律,補(bǔ)成一個n行n列的數(shù)表如下,試寫出數(shù)表第n行第n列的表達(dá)式,并求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

等比數(shù)列滿足,,數(shù)列滿足
(1)求的通項(xiàng)公式;(5分)
(2)數(shù)列滿足,為數(shù)列的前項(xiàng)和.求;(5分)
(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有 的值;若不存在,請說明理由.(6分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題14分,計(jì)入總分)
已知數(shù)列滿足:
⑴求;   
⑵當(dāng)時,求的關(guān)系式,并求數(shù)列中偶數(shù)項(xiàng)的通項(xiàng)公式;
⑶求數(shù)列前100項(xiàng)中所有奇數(shù)項(xiàng)的和.

查看答案和解析>>

同步練習(xí)冊答案