(本小題滿分12分)設數(shù)列的前項和為,且;數(shù)列為等差數(shù)列,且,.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)若,為數(shù)列的前項和. 求:.

(Ⅰ)(Ⅱ)

解析試題分析:(1)由,令,則,又,所以.
,則. 當時,由,可得. 即.
所以是以為首項,為公比的等比數(shù)列,于是.  …………6分
(2)數(shù)列為等差數(shù)列,公差,可得.
從而. …………………………………8分
 
.
從而.  …………………………12分
考點:數(shù)列求和求通項
點評:由求通項,數(shù)列的錯位相減求和是常見的考點

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知數(shù)列的前項和為,滿足.
(1)求證:數(shù)列為等比數(shù)列;
(2)若數(shù)列滿足為數(shù)列的前項和,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)
已知二次函數(shù)同時滿足:①不等式的解集有且只有一個元素;②在定義域內存在,使得不等式成立.
設數(shù)列的前項和,
(1)求數(shù)列的通項公式;
(2)數(shù)列中,令,,求
(3)設各項均不為零的數(shù)列中,所有滿足的正整數(shù)的個數(shù)稱為這個數(shù)列的變號數(shù)。令為正整數(shù)),求數(shù)列的變號數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,點在函數(shù)的圖象上,其中
(1)求;
(2)證明數(shù)列是等比數(shù)列;
(3)設,求及數(shù)列的通項

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分l0分) 在等比數(shù)列中,已知.
求數(shù)列的通項公式;
設數(shù)列的前n項和為,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分)數(shù)列的前項和為,,等差數(shù)列滿足
(I)分別求數(shù)列,的通項公式;
(II)若對任意的,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知:數(shù)列的前項和為,且滿足,.
(Ⅰ)求:,的值;
(Ⅱ)求:數(shù)列的通項公式;
(Ⅲ)若數(shù)列的前項和為,且滿足,求數(shù)列
項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題14分)設各項為正的數(shù)列的前項和為
且滿足:
(1)求         
(2)若,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

若三個數(shù)成等差數(shù)列(其中),且成等比數(shù)列,則的值為               

查看答案和解析>>

同步練習冊答案