如圖1,在直角梯形中,,,且.現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直,為的中點(diǎn),如圖2.
(1)求證:∥平面;
(2)求證:平面;
(3)求點(diǎn)到平面的距離.
(1)見(jiàn)解析(2)見(jiàn)解析(3)
解析試題分析:(1)取EC的中點(diǎn)為N,則MN平行且等于CD的一半,由AB平行且等于CD的一半及平行公理知,NM平行且等于AB,所以ABNM是平行四邊形,所以AM平行BN,所以AM平行面BEC;(2)由面ADEF⊥面ADCB及DE⊥AD,面面垂直性質(zhì)定理知,DE⊥面ADCB,所以AD⊥BC,通過(guò)計(jì)算及勾股定理可知DB⊥BC,由線面垂直的判定定理可得BC垂直面DBE;(3)先算出三棱錐E-DBC的體積及三角形EBC的面積,再利用三棱錐E-DCB的體積與三棱錐D-EBC的體積相等即可求出點(diǎn)D到面BEC的距離.
試題解析:(1)證明:取中點(diǎn),連結(jié).
在△中,分別為的中點(diǎn),
所以∥,且.
由已知∥,,
所以∥,且. 3分
所以四邊形為平行四邊形.
所以∥. 4分
又因?yàn)?sub>平面,且平面,
所以∥平面. 4分
(2)證明:在正方形中,.
又因?yàn)槠矫?sub>平面,且平面平面,
所以平面.
所以. 6分
在直角梯形中,,,可得.
在△中,, .
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐中,四邊形是正方形,,,分別為的中點(diǎn).
(Ⅰ)求證:平面平面;
(Ⅱ)求二面角的平面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知側(cè)棱垂直于底面的四棱柱,ABCD-A1B1C1D1的底面是菱形,且AD="A" A1,
點(diǎn)F為棱BB1的中點(diǎn),點(diǎn)M為線段AC1的中點(diǎn).
(1)求證: MF∥平面ABCD
(2)求證:平面AFC1⊥平面ACC1A1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直三棱柱中,,分別是的中點(diǎn),且.
(1)求直線與所成角的大;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐中,⊥底面,四邊形是直角梯形,⊥,∥,,.
(1)求證:平面⊥平面;
(2)求點(diǎn)C到平面的距離;
(3)求PC與平面PAD所成的角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐中,底面為矩形,平面,是的中點(diǎn).
(1)證明://平面;
(2)設(shè),三棱錐的體積,求到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
定義點(diǎn)到直線的有向距離為.已知點(diǎn)到直線的有向距離分別是,給出以下命題:
①若,則直線與直線平行;②若,則直線與直線平行;
③若,則直線與直線垂直;④若,則直線與直線相交;其中正確命題的序號(hào)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com