如圖,四棱錐中,底面為矩形,平面,是的中點(diǎn).
(1)證明://平面;
(2)設(shè),三棱錐的體積,求到平面的距離.
(1)詳見(jiàn)解析;(2)
解析試題分析:(1)證明直線和平面平行往往可以采取兩種方法:①利用直線和平面平行的判定定理,即證明直線和平面內(nèi)的一條直線平行;②利用面面平行的性質(zhì)定理,即若兩個(gè)平面平行,則一個(gè)平面內(nèi)的任意一條直線和另外一個(gè)平面平行.本題設(shè)和交于點(diǎn),連接.則,進(jìn)而證明//平面.(2)由三棱錐的體積,可求得,易證明面面,則在面內(nèi)作交于,由面面垂直的性質(zhì)定理得平面.在中求.
(1)設(shè)和交于點(diǎn),連接.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/15/6/ual7c.png" style="vertical-align:middle;" />為矩形,所以為的中點(diǎn).又為的中點(diǎn),所以.且平面,平面,所以//平面.
(2).由,可得.作交于.由題設(shè)知平面.所以,故平面.又.所以到平面的距離為.
考點(diǎn):1、直線和平面平行的判定;2、點(diǎn)到平面的距離.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖1,在直角梯形中,,,且.現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直,為的中點(diǎn),如圖2.
(1)求證:∥平面;
(2)求證:平面;
(3)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,圓錐頂點(diǎn)為P,底面圓心為O,其母線與底面所成的角為22.5°,AB和CD是底面圓O上的兩條平行的弦,軸OP與平面PCD所成的角為60°.
(1)證明:平面PAB與平面PCD的交線平行于底面;
(2)求cos∠COD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在正三棱柱ABC-A1B1C1中,點(diǎn)D為棱AB的中點(diǎn),BC=1,AA1=.
(1)求證:BC1∥平面A1CD;
(2)求三棱錐D-A1B1C的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐的底面邊長(zhǎng)為8的正方形,四條側(cè)棱長(zhǎng)均為.點(diǎn)分別是棱上共面的四點(diǎn),平面平面,平面.
證明:
若,求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知四棱錐,底面為矩形,側(cè)棱,其中,為側(cè)棱上的兩個(gè)三等分點(diǎn),如下圖所示.
(1)求證:;
(2)求異面直線與所成角的余弦值;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知三棱柱的側(cè)棱與底面垂直,且,
,,,點(diǎn)、、分別為、、的中點(diǎn).
(1)求證:平面;
(2)求證:;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB中點(diǎn),D為PB中點(diǎn),且△PMB為正三角形.
(1)求證DM∥平面APC;
(2)求證平面ABC⊥平面APC;
(3)若BC=PC=4,求二面角P-AB-C的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com