【題目】一個(gè)20行若干列的0,1數(shù)陣滿足:各列互不相同且任意兩列中同一行都取1的行數(shù)不超過2.求當(dāng)列數(shù)最多時(shí),數(shù)陣中1的個(gè)數(shù)的最小值.
【答案】3820
【解析】
對(duì)于滿足條件的列數(shù)最大的一個(gè)數(shù)陣,
如果這個(gè)數(shù)陣中某一列1的個(gè)數(shù)超過3個(gè),那么,就保留其中任意3個(gè),1,其余的都變成0,這樣就會(huì)得到一個(gè)列數(shù)相同并且仍然滿足要求的一個(gè)新數(shù)陣.
如果這個(gè)新數(shù)陣中還有1的個(gè)數(shù)超過3的列,則重復(fù)上述過程,最后可以得到一個(gè)列數(shù)最多,且每列中1,的個(gè)數(shù)最多為3的滿足要求的數(shù)陣,它的列數(shù)最多為.
另一方面,構(gòu)造一個(gè)滿足要求的數(shù)陣如下:
它包括沒有1的列以及所有互不相同的只有一個(gè)1的列、2個(gè)1的列和3個(gè)1的列.
由上可知這個(gè)數(shù)陣的列數(shù)是最多的,同時(shí),在滿足要求的列數(shù)最多的所有數(shù)陣中,該數(shù)陣中的1是最少的.
此數(shù)陣的列數(shù)為,
此數(shù)陣中1的個(gè)數(shù)是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知ω>0,0<φ<π,直線和是函數(shù)f(x)=sin(ωx+φ)圖象的兩條相鄰的對(duì)稱軸,若將函數(shù)f(x)圖象上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)變?yōu)樵瓉淼?/span>2倍,則得到的圖象的函數(shù)解析式是( )
A.B.
C.y=2cos2xD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】a,b為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與a,b都垂直,斜邊AB以直線AC為旋轉(zhuǎn)軸旋轉(zhuǎn),有下列結(jié)論:
①當(dāng)直線AB與a成60°角時(shí),AB與b成30°角;
②當(dāng)直線AB與a成60°角時(shí),AB與b成60°角;
③直線AB與a所成角的最小值為45°;
④直線AB與a所成角的最大值為60°.
其中正確的是________.(填寫所有正確結(jié)論的編號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,.
(1)如果函數(shù)的單調(diào)遞減區(qū)間為,求函數(shù)的解析式;
(2)在(1)的條件下,求函數(shù)的圖象在點(diǎn)處的切線方程;
(3)若不等式恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正多面體共有5種,即正四面體、正六面體、正八面體、正十二面體和正二十面體.任一個(gè)正多面體都有內(nèi)切球和外接球,若一個(gè)半徑為1的球既是一個(gè)正四面體的內(nèi)切球,又是一個(gè)正六面體的外接球,則這兩個(gè)多面體的頂點(diǎn)之間的最短距離為( )
A.-1B.1C.2-1D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過直線上的點(diǎn)作橢圓的切線,切點(diǎn)分別為,聯(lián)結(jié).
(1)當(dāng)點(diǎn)在直線上運(yùn)動(dòng)時(shí),證明:直線恒過定點(diǎn);
(2)當(dāng)時(shí),定點(diǎn)平分線段.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩焦點(diǎn)分別為,其短半軸長(zhǎng)為.
(1)求橢圓的方程;
(2)設(shè)不經(jīng)過點(diǎn)的直線與橢圓相交于兩點(diǎn).若直線與的斜率之和為,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中為正實(shí)數(shù).
(1)若不等式恒成立,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,離心率為,過右焦點(diǎn)作直線交橢圓于,兩點(diǎn),的周長(zhǎng)為,點(diǎn).
(1)求橢圓的方程;
(2)設(shè)直線、的斜率,,請(qǐng)問是否為定值?若是定值,求出其定值;若不是,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com