【題目】已知函數(shù),的導(dǎo)函數(shù).

1)若,當(dāng)時(shí),函數(shù)內(nèi)有唯一的極大值,求的取值范圍;

2)若,試研究的零點(diǎn)個(gè)數(shù).

【答案】1;(2個(gè)零點(diǎn)

【解析】

1)先求導(dǎo)得,再分兩種情況討論求得的取值范圍;(2)分析可知,只需研究時(shí)零點(diǎn)的個(gè)數(shù)情況,再分兩種情形討論即可.

1)當(dāng)時(shí),,

是減函數(shù),且,,

①,當(dāng),時(shí),恒成立,是增函數(shù),無極值;

②,當(dāng)時(shí),,使得,,單調(diào)遞增;

,單調(diào)遞減,唯一的極大值點(diǎn),所以

2,,,可知,

i時(shí),,無零點(diǎn);所以只需研究,

ii時(shí),,可知單調(diào)遞減,

,,唯一的,

iii)當(dāng),是減函數(shù),且,

,是增函數(shù),是減函數(shù),并且,

所以,;,且知單調(diào)遞減,在單調(diào)遞增,在單調(diào)遞減.

又因?yàn)?/span>,,所以,,

,綜上所述,由(i)(ii)(iii)可知,個(gè)零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C的頂點(diǎn)為坐標(biāo)原點(diǎn)O,對(duì)稱軸為軸,其準(zhǔn)線為.

1)求拋物線C的方程;

2)設(shè)直線,對(duì)任意的拋物線C上都存在四個(gè)點(diǎn)到直線l的距離為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的最大值為A,若存在實(shí)數(shù)使得對(duì)任意實(shí)數(shù)總有成立,則的最小值為____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),,,給出以下四種排序:①M,N,T;②M,T,N;③N,T,M;④T,N,M.從中任選一個(gè),補(bǔ)充在下面的問題中,解答相應(yīng)的問題.

已知等比數(shù)列中的各項(xiàng)都為正數(shù),,且__________依次成等差數(shù)列.

(Ⅰ)求的通項(xiàng)公式;

(Ⅱ)設(shè)數(shù)列的前n項(xiàng)和為,求滿足的最小正整數(shù)n

注:若選擇多種排序分別解答,按第一個(gè)解答計(jì)分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),的導(dǎo)函數(shù).

1)若,當(dāng)時(shí),函數(shù)內(nèi)有唯一的極大值,求的取值范圍;

2)若,試研究的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,,四邊形和四邊形是兩個(gè)全等的等腰梯形.

(1)求證:四邊形為矩形;

(2)若平面平面,,,求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某疫苗進(jìn)行安全性臨床試驗(yàn).該疫苗安全性的一個(gè)重要指標(biāo)是:注射疫苗后人體血液中的高鐵血紅蛋白(MetHb)的含量(以下簡(jiǎn)稱為M含量)不超過1%,則為陰性,認(rèn)為受試者沒有出現(xiàn)高鐵血紅蛋白血癥(簡(jiǎn)稱血癥);若M含量超過1%,則為陽性,認(rèn)為受試者出現(xiàn)血癥.若一批受試者的M含量平均數(shù)不超過0.65%,且出現(xiàn)血癥的被測(cè)試者的比例不超過5%,則認(rèn)為該疫苗在M含量指標(biāo)上是安全的;否則為不安全”.現(xiàn)有男、女志愿者各200名接受了該疫苗注射,按照性別分層,隨機(jī)抽取50名志愿者進(jìn)行M含量的檢測(cè),其中女性志愿者被檢測(cè)出陽性的恰好1.經(jīng)數(shù)據(jù)整理,制得頻率分布直方圖如下.(注:在頻率分布直方圖中,同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表.

1)請(qǐng)說明該疫苗在M含量指標(biāo)上的安全性;

2)請(qǐng)利用樣本估計(jì)總體的思想,完成這400名志愿者的列聯(lián)表,并判斷是否有超過99%的把握認(rèn)為,注射疫苗后,高鐵血紅蛋白血癥與性別有關(guān)?

陽性

陰性

附:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c為正實(shí)數(shù),且滿足a+b+c1.證明:

1|a|+|b+c1|

2)(a3+b3+c3)(≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020312日,國(guó)務(wù)院新聞辦公室發(fā)布會(huì)重點(diǎn)介紹了改革開放40年,特別是黨的十八大以來我國(guó)脫貧攻堅(jiān)、精準(zhǔn)扶貧取得的顯著成績(jī),這些成績(jī)?yōu)槿婷撠毘醪浇ǔ尚】瞪鐣?huì)奠定了堅(jiān)實(shí)的基礎(chǔ).下圖是統(tǒng)計(jì)局公布的2010年~2019年年底的貧困人口和貧困發(fā)生率統(tǒng)計(jì)表.則下面結(jié)論正確的是(

(年底貧困人口的線性回歸方程為(其中年份-2019),貧困發(fā)生率的線性回歸方程為(其中年份-2009)

A.2010年~2019年十年間脫貧人口逐年減少,貧困發(fā)生率逐年下降

B.2012~2019年連續(xù)八年每年減貧超過1000萬,且2019年貧困發(fā)生率最低

C.2010年~2019年十年間超過1.65億人脫貧,其中2015年貧困發(fā)生率低于6

D.根據(jù)圖中趨勢(shì)線可以預(yù)測(cè),到2020年底我國(guó)將實(shí)現(xiàn)全面脫貧

查看答案和解析>>

同步練習(xí)冊(cè)答案