【題目】已知直線(為參數(shù)),曲線為參數(shù)).

(1)設(shè)相交于兩點(diǎn),求;

(2)若把曲線上各點(diǎn)的橫坐標(biāo)壓縮為原來的倍,縱坐標(biāo)壓縮為原來的倍,得到曲線,設(shè)點(diǎn)P是曲線上的一個(gè)動(dòng)點(diǎn),求它到直線的距離的最大值.

【答案】(1);(2)

【解析】

1)消去直線參數(shù)方程的參數(shù),求得直線的普通方程.消去曲線參數(shù)方程的參數(shù),求得曲線的普通方程,聯(lián)立直線和曲線的方程求得交點(diǎn)的坐標(biāo),再根據(jù)兩點(diǎn)間的距離公式求得.2)根據(jù)坐標(biāo)變換求得曲線的參數(shù)方程,由此設(shè)出點(diǎn)坐標(biāo),利用點(diǎn)到直線距離公式列式,結(jié)合三角函數(shù)最值的求法,求得到直線的距離的最大值.

(1)的普通方程為,的普通方程為

聯(lián)立方程組,解得交點(diǎn)為,

所以=

(2)曲線為參數(shù)).設(shè)所求的點(diǎn)為,

到直線的距離.

當(dāng)時(shí),取得最大值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,過點(diǎn)的直線與原點(diǎn)的距離為.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)設(shè)分別為橢圓C的左、右焦點(diǎn),過作直線交橢圓于P,Q兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)有關(guān)于x的一元二次方程

a是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),b是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率;

a是從區(qū)間任取的一個(gè)數(shù),b是從區(qū)間任取的一個(gè)數(shù),求上述方程有實(shí)數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位同學(xué)參加數(shù)學(xué)競賽培訓(xùn),現(xiàn)得到他們在培訓(xùn)期間參加的8次比賽成績?nèi)缦拢杭祝?/span>81,7995,88,84,93,78,82;乙:80,8392,8575,9580,90.

1)試畫出甲、乙兩位同學(xué)比賽成績的莖葉圖,你能從莖葉圖中獲取哪些信息?(不少于三條)

2)在甲同學(xué)的8次比賽成績中,從不小于80分的成績中隨機(jī)抽取2個(gè)成績,列出所有可能的結(jié)果,并求抽出的2個(gè)成績均大于85分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求曲線的斜率為1的切線方程;

(Ⅱ)當(dāng)時(shí),求證:;

(Ⅲ)設(shè),記在區(qū)間上的最大值為Ma),當(dāng)Ma)最小時(shí),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某餐廳通過查閱了最近5次食品交易會(huì)參會(huì)人數(shù) (萬人)與餐廳所用原材料數(shù)量 (袋),得到如下統(tǒng)計(jì)表:

第一次

第二次

第三次

第四次

第五次

參會(huì)人數(shù) (萬人)

13

9

8

10

12

原材料 (袋)

32

23

18

24

28

(1)根據(jù)所給5組數(shù)據(jù),求出關(guān)于的線性回歸方程.

(2)已知購買原材料的費(fèi)用 (元)與數(shù)量 (袋)的關(guān)系為,

投入使用的每袋原材料相應(yīng)的銷售收入為700元,多余的原材料只能無償返還,據(jù)悉本次交易大會(huì)大約有15萬人參加,根據(jù)(1)中求出的線性回歸方程,預(yù)測餐廳應(yīng)購買多少袋原材料,才能獲得最大利潤,最大利潤是多少?(注:利潤銷售收入原材料費(fèi)用).

參考公式: , .

參考數(shù)據(jù): , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求的單調(diào)遞增區(qū)間.

(2)在ΔABC中,角AB,C所對的邊分別為a,bc,若f(A)=1,c=10,cosB=,求ΔABC的中線AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足,.

(1)求函數(shù)f(x)的解析式;

(2)求函數(shù)g(x)的單調(diào)區(qū)間;

(3)給出定義:若s,t,r滿足,則稱st更接近于r,當(dāng)x≥1時(shí),試比較哪個(gè)更接近,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù)的圖象與軸相切.

(1)求實(shí)數(shù)a的值;

(2)求的單調(diào)區(qū)間;

(3)當(dāng)時(shí),恒有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案