【題目】如圖,在四棱錐中,底面為直角梯形, ,平面底面, 為中點, 是棱上的點, .
(Ⅰ)若點是棱的中點,求證: 平面;
(Ⅱ)求證:平面平面;
(Ⅲ)若二面角為,設,試確定的值.
【答案】(I)詳見解析;(II)詳見解析;(III).
【解析】試題分析:(Ⅰ)連接交于,連接,證得,再利用線面平行的判定定理,證得平面;
(Ⅱ)因為為中點,得到,進而得到平面,利用面面垂直的判定定理,即可證明平面平面;
(Ⅲ)以為原點,以的方向分別為軸, 軸的正方向,建立如圖所示的空間直角坐標系,求得平面的一個法向量和平面中, ,利用向量的夾角公式,即可求得的值.
試題解析:
(Ⅰ)證明:連接交于,連接,
因為且,即且
所以四邊形為平行四邊形,且為中點,
又因為是中點,
所以,
因為平面, 平面
所以平面.
(Ⅱ)因為為中點,
所以四邊形為平行四邊形,所以.
因為,所以,即.
又因為平面平面,且平面平面,
所以平面,
因為平面,
所以平面平面.
(Ⅲ)因為為的中點,所以.
又因為平面平面,且平面平面,
所以平面
以為原點,以的方向分別為軸, 軸的正方向,
建立如圖所示的空間直角坐標系,
則點, , , ,平面的一個法向量.
設,則,,
因為
所以
在平面中, ,
因為二面角為,
所以,
所以.
科目:高中數(shù)學 來源: 題型:
【題目】若是各項均為正數(shù)的數(shù)列的前項和,且.
(1)求的值;
(2)設,且數(shù)列的前項和滿足對任意正整數(shù)恒成立,求實數(shù)的取值范圍;
(3)設,問:是否存在正整數(shù),使得對一切正整數(shù)恒成立?若存在,請求出實數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某物流公司引進了一套無人智能配貨系統(tǒng),購買系統(tǒng)的費用為80萬元,維持系統(tǒng)正常運行的費用包括保養(yǎng)費和維修費兩部分,每年的保養(yǎng)費用為1萬元.該系統(tǒng)的維修費為:第一年萬元,第二年萬元,第三年2萬元,…,依等差數(shù)列逐年遞增.
(1)求該系統(tǒng)使用n年的總費用(包括購買設備的費用);
(2)求該系統(tǒng)使用多少年報廢,使年平均費用最少.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的左、右焦點分別為,,點在橢圓上,滿足.
(1)求橢圓的標準方程;
(2)直線過點,且與橢圓只有一個公共點,直線與的傾斜角互補,且與橢圓交于異于點的兩點,,與直線交于點(介于,兩點之間).
(i)求證:;
(ii)是否存在直線,使得直線、、、的斜率按某種順序能構成等比數(shù)列?若能,求出的方程;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校在學校內(nèi)招募了名男志愿者和名女志愿者.將這名志愿者的身高編成如右莖葉圖(單位: ),若身高在以上(包括)定義為“高個子”,身高在以下(不包括)定義為“非高個子”,且只有“女高個子”才能擔任“禮儀小姐”.
(Ⅰ)如果用分層抽樣的方法從“高個子”和“非高個子”中抽取人,再從這人中選人,那么至少有一人是“高個子”的概率是多少?
(Ⅱ)若從所有“高個子”中選名志愿者,用表示所選志愿者中能擔任“禮儀小姐”的人數(shù),試寫出的分布列,并求的數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓M的方程為,直線l的方程為,點P在直線l上,過P點作圓M的切線,,切點為A,B.
(1)若,試求點P的坐標;
(2)求證:經(jīng)過A,P,M三點的圓必過定點,并求出所有定點的坐標;
(3)設線段的中點為N,求點N的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2016·全國Ⅲ卷)已知數(shù)列{an}的前n項和Sn=1+λan,其中λ≠0.
(1)證明{an}是等比數(shù)列,并求其通項公式;
(2)若S5=,求λ.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點(點均在第一象限),且直線的斜率成等比數(shù)列,證明:直線的斜率為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com