【題目】若是各項均為正數(shù)的數(shù)列的前項和,且.
(1)求的值;
(2)設(shè),且數(shù)列的前項和滿足對任意正整數(shù)恒成立,求實數(shù)的取值范圍;
(3)設(shè),問:是否存在正整數(shù),使得對一切正整數(shù)恒成立?若存在,請求出實數(shù)的值;若不存在,請說明理由.
【答案】(1),;(2)或;(3)存在,
【解析】
(1)令,可求出,令,可求出,進(jìn)而可求得的值;
(2)先求出的表達(dá)式,進(jìn)而可求出的表達(dá)式,再結(jié)合,可求出,并得到,從而可知,即可求出的取值范圍;
(3)由,可知當(dāng)時,,當(dāng)時,,從而可知時,對一切正整數(shù)恒成立.
(1)當(dāng)時,,解得,
因為數(shù)列各項均為正數(shù),所以.
當(dāng)時,,又,解得,
由,解得.
(2)因為,
所以,又,所以.
當(dāng)時,,
當(dāng)時,.
時也符合上式,所以.
則,
所以.
所以,解得或.
(3)因為,
所以.
當(dāng)時,,所以,
當(dāng)時,,所以.
所以時,對一切正整數(shù)恒成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,討論函數(shù)的單調(diào)性;
(2)若不等式 對于任意成立,求正實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場計劃種植某種新作物,為此對這種作物的兩個品種(分別稱為品種甲和品種乙)進(jìn)行田間試驗.選取兩大塊地,每大塊地分成小塊地,在總共小塊地中.隨機(jī)選小塊地種植品種甲,另外小塊地種植品種乙.
()假設(shè),求第一大塊地都種植品種甲的概率.
()試驗時每大塊地分成小塊.即,試驗結(jié)束后得到品種甲和品種乙在各個小塊地上的每公頃產(chǎn)量(單位)如下表:
品種甲 | |||||
品種乙 |
分別求品種甲和品種乙的每公頃產(chǎn)量的樣本平均數(shù)和樣本方差;根據(jù)試驗結(jié)果,你認(rèn)為應(yīng)該種植哪一品種?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρsin2θ=2acos θ(a>0),過點(diǎn)P(-2,-4)的直線l: (t為參數(shù))與曲線C相交于M,N兩點(diǎn).
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若|PM|,|MN|,|PN|成等比數(shù)列,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: 經(jīng)過點(diǎn)P(2,1),且離心率為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),在橢圓短軸上有兩點(diǎn)M,N滿足,直線PM、PN分別交橢圓于A,B.探求直線AB是否過定點(diǎn),如果經(jīng)過定點(diǎn)請求出定點(diǎn)的坐標(biāo),如果不經(jīng)過定點(diǎn),請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若為偶函數(shù),求的值并寫出的增區(qū)間;
(Ⅱ)若關(guān)于的不等式的解集為,當(dāng)時,求的最小值;
(Ⅲ)對任意的,,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形, ,平面底面, 為中點(diǎn), 是棱上的點(diǎn), .
(Ⅰ)若點(diǎn)是棱的中點(diǎn),求證: 平面;
(Ⅱ)求證:平面平面;
(Ⅲ)若二面角為,設(shè),試確定的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com