已知函數(shù)滿足如下條件:當(dāng)時,,且對任
意,都有.
(1)求函數(shù)的圖象在點處的切線方程;
(2)求當(dāng),時,函數(shù)的解析式;
(3)是否存在,、、、、,使得等式
成立?若存在就求出(、、、、),若不存在,說明理由.
(1);(2);(3)詳見解析.
解析試題分析:(1)先求出與的值,利用點斜式求出相應(yīng)的切線方程;(2)利用題中的條件結(jié)合迭
代法求出函數(shù)在區(qū)間上的解析式;(3)構(gòu)造新函數(shù),考
查函數(shù)在區(qū)間上的單調(diào)性,求出函數(shù)在區(qū)間上
的最小值,于是得到,然后利用分組求和法與錯位相減法來證明
題中相應(yīng)的等式.
(1)時,,,
所以,函數(shù)的圖象在點處的切線方程為,即;
(2)因為,
所以,當(dāng),時,,
;
(3)考慮函數(shù),,,
則,
當(dāng)時,,單調(diào)遞減;
當(dāng)時,;
當(dāng)時,,單調(diào)遞增;
所以,當(dāng),時,,
當(dāng)且僅當(dāng)時,.
所以,,
而,
令,則,
兩式相減得,
,
所以,,
故,
所以,,
當(dāng)且僅當(dāng),、、、、時,
,
所以,存在唯一一組實數(shù),、、、、,
使得等式成立.
考點:1.導(dǎo)數(shù)的幾何意義;2.函數(shù)的解析式;3.分組求和法與錯位相減法
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R.
(1)當(dāng)a=0時,求曲線y=f(x)在點(1,f(1))處的切線的斜率;
(2)當(dāng)a≠時,求函數(shù)y=f(x)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),函數(shù)
⑴當(dāng)時,求函數(shù)的表達(dá)式;
⑵若,函數(shù)在上的最小值是2 ,求的值;
(3)⑵的條件下,求直線與函數(shù)的圖象所圍成圖形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1)若函數(shù)f(x)在R上單調(diào)遞增,求實數(shù)a的取值范圍;
(2)若函數(shù)f(x)在區(qū)間(-1,1)上單調(diào)遞減,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
是否存在實數(shù)a,使函數(shù)f(x)=loga(ax2-x)在區(qū)間[2,4]上是增函數(shù)?如果存在,求出a的取值范圍;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ln x+2x,g(x)=a(x2+x).
(1)若a=,求F(x)=f(x)-g(x)的單調(diào)區(qū)間;
(2)若f(x)≤g(x)恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分)(2011•廣東)設(shè)a>0,討論函數(shù)f(x)=lnx+a(1﹣a)x2﹣2(1﹣a)x的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)a=l時,求的單調(diào)區(qū)間;
(2)若函數(shù)在上是減函數(shù),求實數(shù)a的取值范圍;
(3)令,是否存在實數(shù)a,當(dāng)(e是自然對數(shù)的底數(shù))時,函數(shù)g(x)最小值是3,若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com