已知函數(shù).
(1)當(dāng)a=l時(shí),求的單調(diào)區(qū)間;
(2)若函數(shù)上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(3)令,是否存在實(shí)數(shù)a,當(dāng)(e是自然對(duì)數(shù)的底數(shù))時(shí),函數(shù)g(x)最小值是3,若存在,求出a的值;若不存在,說明理由.

(1)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2);(3)存在實(shí)數(shù).

解析試題分析:(1)把代入函數(shù)解析式得,且定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0a/3/mfaeu4.png" style="vertical-align:middle;" />,利用導(dǎo)數(shù)法可求出函數(shù)的單調(diào)區(qū)間,由,分別解不等式,,注意函數(shù)定義域,從而可求出函數(shù)的單調(diào)區(qū)間;(2)此問題利用導(dǎo)數(shù)法來解決,若函數(shù)上是減函數(shù),則其導(dǎo)函數(shù)上恒成立,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/80/6/ug8kx.png" style="vertical-align:middle;" />,所以函數(shù),必有,從而解得實(shí)數(shù)的取值范圍;(3)利用導(dǎo)數(shù)求極值的方法來解決此問題,由題意得,則,令,解得,通過對(duì)是否在區(qū)間上進(jìn)行分類討論,可求得當(dāng)時(shí),有,滿足條件,從而可求出實(shí)數(shù)的值.
(1)當(dāng)時(shí),.    2分
因?yàn)楹瘮?shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0a/3/mfaeu4.png" style="vertical-align:middle;" />,
所以當(dāng)時(shí),,當(dāng)時(shí),.
所以函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.    4分
(2)上恒成立.
,有,    6分
.    8分
(3)假設(shè)存在實(shí)數(shù),使有最小值3,
.  9分
當(dāng)時(shí),上單調(diào)遞減,
,(舍去);    10分
②當(dāng)時(shí),上單調(diào)遞減,在上單調(diào)遞增.
,解得,滿足條件;    12分
③當(dāng)時(shí),上單調(diào)遞減,
,(舍去).    13分
綜上,存在實(shí)數(shù),使得當(dāng)時(shí),有最小值3.    14分
考點(diǎn):1.導(dǎo)數(shù)性質(zhì);2.不等式求解;3.分類討論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)滿足如下條件:當(dāng)時(shí),,且對(duì)任
,都有.
(1)求函數(shù)的圖象在點(diǎn)處的切線方程;
(2)求當(dāng),時(shí),函數(shù)的解析式;
(3)是否存在,、、、、,使得等式
成立?若存在就求出、、、),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若,求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)設(shè)函數(shù).若至少存在一個(gè),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),函數(shù)圖象上的點(diǎn)都在所表示的平面區(qū)域內(nèi),不等式恒成立,求實(shí)數(shù)的取值范圍.    [來源:學(xué)科

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)
(1)若曲線在點(diǎn)處的切線方程為,求的值;
(2)當(dāng)時(shí),求的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若對(duì)任意的都有恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若函數(shù)y=f(x)在x=x0處取得極大值或極小值,則稱x0為函數(shù)y=f(x)的極值點(diǎn).已知A,b是實(shí)數(shù),1和-1是函數(shù)f(x)=x3+Ax2+b x的兩個(gè)極值點(diǎn).
(1)求A和b的值;
(2)設(shè)函數(shù)g(x)的導(dǎo)函數(shù)g′(x)=f(x)+2,求g(x)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=aln x-ax-3(a∈R).
(1)若a=-1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,對(duì)于任意的t∈[1,2],函數(shù)g(x)=x3+x2(f′(x)是f(x)的導(dǎo)數(shù))在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;
(3)求證:×…×<(n≥2,n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)試問函數(shù)能否在處取得極值,請(qǐng)說明理由;
(2)若,當(dāng)時(shí),函數(shù)的圖像有兩個(gè)公共點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案