已知函數(shù)(為常數(shù),是自然對數(shù)的底數(shù)),曲線在點處的切線與軸平行.
(Ⅰ)求的值;
(Ⅱ)求的單調區(qū)間;
(Ⅲ)設,其中為的導函數(shù).證明:對任意.
(1)
(2)在區(qū)間內為增函數(shù);在內為減函數(shù).
(3)構造函數(shù)借助于導數(shù)分析函數(shù)單調性,進而得到求解最值來得到證明。
解析試題分析:解析:由f(x) = 可得,而,即,解得; 4分
(Ⅱ),令可得,
當時,;當時,.
于是在區(qū)間內為增函數(shù);在內為減函數(shù). 8分
(Ⅲ),
(1)當時, ,. 10分
(2)當時,要證.
只需證即可
設函數(shù).
則,
則當時,
令解得,
當時;當時,
則當時,且,
則,于是可知當時成立
綜合(1)(2)可知對任意x>0,恒成立. 14分
另證1:設函數(shù),則,
則當時,
于是當時,要證,
只需證即可,
設,,
令解得,
當時;當時,
則當時,
于是可知當時成立
綜合(1)(2)可知對任意x>0,恒成立.
另證2:根據(jù)重要不等式當時,即,
于是不等式,
設,,
令解得,
當時;當時<
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)(為非零常數(shù)).
(Ⅰ)當時,求函數(shù)的最小值;
(Ⅱ)若恒成立,求的值;
(Ⅲ)對于增區(qū)間內的三個實數(shù)(其中),
證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)求的單調遞增區(qū)間;
(2)若在處的切線與直線垂直,求證:對任意,都有;
(3)若,對于任意,都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(Ⅰ)若在上的最大值為,求實數(shù)的值;
(Ⅱ)若對任意,都有恒成立,求實數(shù)的取值范圍;
(Ⅲ)在(Ⅰ)的條件下,設,對任意給定的正實數(shù),曲線 上是否存在兩點,使得是以(為坐標原點)為直角頂點的直角三角形,且此三角形斜邊中點在軸上?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù).
(1)求函數(shù)的單調區(qū)間和極值。
(2)若關于的方程有三個不同實根,求實數(shù)的取值范圍;
(3)已知當(1,+∞)時,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(1)當時,求函數(shù)在上的最大值和最小值;
(2)討論函數(shù)的單調性;
(3)若函數(shù)在處取得極值,不等式對恒成立,求實數(shù)的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com