已知函數(shù)
(Ⅰ)求函數(shù)的圖像在處的切線方程;
(Ⅱ)設(shè)實(shí)數(shù),求函數(shù)在上的最小值.
(1),(2)
解析試題分析:(1)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0d/c/1bog93.png" style="vertical-align:middle;" /> 又
函數(shù)的在處的切線方程為:,即
(2)令得 當(dāng),,單調(diào)遞減,當(dāng),,單調(diào)遞增.
(i)當(dāng)時,在單調(diào)遞增,,
(ii)當(dāng)即時,
(iii)當(dāng)即時,在單調(diào)遞減,
考點(diǎn):導(dǎo)數(shù)的幾何意義,直線方程,利用導(dǎo)數(shù)研究函數(shù)的極值(最值)。
點(diǎn)評:典型題,切線的斜率,等于在切點(diǎn)的導(dǎo)函數(shù)值。利用導(dǎo)數(shù)研究函數(shù)的極值,一般遵循“求導(dǎo)數(shù)、求駐點(diǎn)、研究導(dǎo)數(shù)的正負(fù)、確定極值”,利用“表解法”,清晰易懂。為研究函數(shù)的極值,就參數(shù)的范圍進(jìn)行討論,易于出錯。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,
⑴求函數(shù)的單調(diào)區(qū)間;
⑵記函數(shù),當(dāng)時,在上有且只有一個極值點(diǎn),求實(shí)數(shù)的取值范圍;
⑶記函數(shù),證明:存在一條過原點(diǎn)的直線與的圖象有兩個切點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某商場銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量y(單位:千克)與銷售價格x(單位:元/千克)滿足關(guān)系式,其中3<x<6,a 為常數(shù),已知銷售價格為5元/千克時,每日可售出該商品11千克。
(I)求a的值
(II)若該商品的成品為3元/千克,試確定銷售價格x的值,使商場每日銷售該商品所獲得的利潤最大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若曲線在和處的切線互相平行,求的值;
(2)求的單調(diào)區(qū)間;
(3)設(shè),若對任意,均存在,使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)的導(dǎo)數(shù)滿足,其中.
求曲線在點(diǎn)處的切線方程;
設(shè),求函數(shù)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(為常數(shù),是自然對數(shù)的底數(shù)),曲線在點(diǎn)處的切線與軸平行.
(Ⅰ)求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),其中為的導(dǎo)函數(shù).證明:對任意.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中常數(shù).
(1)求的單調(diào)區(qū)間;
(2)如果函數(shù)在公共定義域D上,滿足,那么就稱 為與的“和諧函數(shù)”.設(shè),求證:當(dāng)時,在區(qū)間上,函數(shù)與的“和諧函數(shù)”有無窮多個.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com