已知函數(shù)
⑴求函數(shù)的單調(diào)區(qū)間;
⑵記函數(shù),當(dāng)時(shí),上有且只有一個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍;
⑶記函數(shù),證明:存在一條過原點(diǎn)的直線的圖象有兩個(gè)切點(diǎn)

(1)當(dāng)時(shí),為單調(diào)增區(qū)間,當(dāng)時(shí),為單調(diào)減區(qū)間, 為單調(diào)增區(qū)間.
(2)
(3)在第二問的基礎(chǔ)上,根據(jù)函數(shù)的單調(diào)性以及導(dǎo)數(shù)的幾何意義來證明。

解析試題分析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d6/0/1g89t2.png" style="vertical-align:middle;" />,
①若,則,上為增函數(shù),2分 ②若,令,得,
當(dāng)時(shí),;當(dāng)時(shí),
所以為單調(diào)減區(qū)間,為單調(diào)增區(qū)間. 綜上可得,當(dāng)時(shí),為單調(diào)增區(qū)間,
當(dāng)時(shí),為單調(diào)減區(qū)間, 為單調(diào)增區(qū)間.  4分
(2)時(shí),,
,  5分
上有且只有一個(gè)極值點(diǎn),即上有且只有一個(gè)根且不為重根,

(i),,滿足題意;…… 6分
(ii)時(shí),,即;… 7分
(iii)時(shí),,得,故; 綜上得:上有且只有一個(gè)極值點(diǎn)時(shí),. ………8分注:本題也可分離變量求得.
(3)證明:由(1)可知:
(i)若,則,上為單調(diào)增函數(shù),
所以直線 的圖象不可能有兩個(gè)切點(diǎn),不合題意. 9分
(ⅱ)若處取得極值
,時(shí),由圖象知不可能有兩個(gè)切點(diǎn).10分
,設(shè)圖象與軸的兩個(gè)交點(diǎn)的橫坐標(biāo)為(不妨設(shè)),
則直線的圖象有兩個(gè)切點(diǎn)即為直線的切點(diǎn).,
設(shè)切點(diǎn)分別為,則,且
,,,
   ① , 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) 
(Ⅰ)若處的切線垂直于直線,求該點(diǎn)的切線方程,并求此時(shí)函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若對任意的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

規(guī)定其中,為正整數(shù),且=1,這是排列數(shù)(是正整數(shù),)的一種推廣.
(Ⅰ) 求的值;
(Ⅱ)排列數(shù)的兩個(gè)性質(zhì):①,②(其中m,n是正整數(shù)).是否都能推廣到(,是正整數(shù))的情形?若能推廣,寫出推廣的形式并給予證明;若不能,則說明理由;
(Ⅲ)已知函數(shù),試討論函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù),過曲線上的點(diǎn)P的切線方程為
(1)若時(shí)有極值,求的表達(dá)式;
(2)在(1)的條件下,求在[-3,1]上的最大值;
(3)若函數(shù)在區(qū)間[-2,1]上單調(diào)遞增,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)若時(shí),關(guān)于的方程有唯一解,求的值;
(3)當(dāng)時(shí),證明: 對一切,都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(I)若a=-1,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45o,對于任意的t [1,2],函數(shù)的導(dǎo)函數(shù))在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;
(Ⅲ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(為非零常數(shù)).
(Ⅰ)當(dāng)時(shí),求函數(shù)的最小值; 
(Ⅱ)若恒成立,求的值;
(Ⅲ)對于增區(qū)間內(nèi)的三個(gè)實(shí)數(shù)(其中),
證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求的單調(diào)遞增區(qū)間;
(2)若處的切線與直線垂直,求證:對任意,都有
(3)若,對于任意,都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)的圖像在處的切線方程;
(Ⅱ)設(shè)實(shí)數(shù),求函數(shù)上的最小值.

查看答案和解析>>

同步練習(xí)冊答案