已知函數(shù) 
(Ⅰ)若處的切線垂直于直線,求該點(diǎn)的切線方程,并求此時(shí)函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.

(Ⅰ) ,的單調(diào)遞增區(qū)間是;單調(diào)遞減區(qū)間是;
(Ⅱ) .

解析試題分析:(Ⅰ)通過(guò)切線垂直直線可以得到切線的斜率,解出,將代入求出切點(diǎn)坐標(biāo),從而求出切線方程,令分別求出函數(shù)的單調(diào)遞增區(qū)間和遞減區(qū)間;(Ⅱ)通過(guò)對(duì)的討論,求出上的最大值,令,解出的取值范圍.
試題解析:(Ⅰ) ,根據(jù)題意,解得,
此時(shí)切點(diǎn)坐標(biāo)是,故所求的切線方程是,即.
當(dāng)時(shí),,
,解得,令,解得,故函數(shù)的單調(diào)遞增區(qū)間是;單調(diào)遞減區(qū)間是.             5分
(Ⅱ) .
①若,則在區(qū)間上恒成立,在區(qū)間上單調(diào)遞增,函數(shù)在區(qū)間上的最大值為;                     7分
②若,則在區(qū)間,函數(shù)單調(diào)遞減,在區(qū)間,函數(shù)單調(diào)遞增,故函數(shù)在區(qū)間上的最大值為,中的較大者,,故當(dāng)時(shí),函數(shù)的最大值為,當(dāng)時(shí),函數(shù)的最大值為;                     9分
③當(dāng)時(shí),在區(qū)間上恒成立,函數(shù)在區(qū)間上單調(diào)遞減,函數(shù)的最大值為.                      11分
綜上可知,在區(qū)間上,當(dāng)時(shí),函數(shù),當(dāng)時(shí),函數(shù).
不等式對(duì)任意的恒成立等價(jià)于在區(qū)間上,,故當(dāng)時(shí),,即,解得;當(dāng)時(shí),,即

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

預(yù)計(jì)某地區(qū)明年從年初開(kāi)始的前個(gè)月內(nèi),對(duì)某種商品的需求總量 (萬(wàn)件)近似滿足:N*,且
(1)寫(xiě)出明年第個(gè)月的需求量(萬(wàn)件)與月份 的函數(shù)關(guān)系式,并求出哪個(gè)月份的需求量超過(guò)萬(wàn)件;
(2)如果將該商品每月都投放到該地區(qū)萬(wàn)件(不包含積壓商品),要保證每月都滿足供應(yīng), 應(yīng)至少為多少萬(wàn)件?(積壓商品轉(zhuǎn)入下月繼續(xù)銷售)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)是否存在點(diǎn),使得函數(shù)的圖像上任意一點(diǎn)P關(guān)于點(diǎn)M對(duì)稱的點(diǎn)Q也在函數(shù)的圖像上?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(2)定義,其中,求
(3)在(2)的條件下,令,若不等式對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知處取得極值。
(Ⅰ)證明:;
(Ⅱ)是否存在實(shí)數(shù),使得對(duì)任意?若存在,求的所有值;若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),其中為正實(shí)數(shù),.
(I)若的一個(gè)極值點(diǎn),求的值;
(II)求的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1) 當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2) 當(dāng)時(shí),函數(shù)圖象上的點(diǎn)都在所表示的平面區(qū)域內(nèi),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),點(diǎn)為一定點(diǎn),直線分別與函數(shù)的圖象和軸交于點(diǎn),,記的面積為.
(I)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(II)當(dāng)時(shí), 若,使得, 求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

函數(shù)
(1)當(dāng)時(shí),對(duì)任意R,存在R,使,求實(shí)數(shù)的取值范圍;
(2)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),,
⑴求函數(shù)的單調(diào)區(qū)間;
⑵記函數(shù),當(dāng)時(shí),上有且只有一個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍;
⑶記函數(shù),證明:存在一條過(guò)原點(diǎn)的直線的圖象有兩個(gè)切點(diǎn)

查看答案和解析>>

同步練習(xí)冊(cè)答案