已知函數(shù).
(1)求的單調(diào)遞增區(qū)間;
(2)若處的切線與直線垂直,求證:對(duì)任意,都有
(3)若,對(duì)于任意,都有成立,求實(shí)數(shù)的取值范圍.

(1)當(dāng);
上遞增。
(2)。
(3)。

解析試題分析:(1)當(dāng)  2分
上遞增  4分
(2)  6分
由(1)得:上遞增  6分
  8分
  10分
(3)設(shè),由(1)得:
等價(jià)于
即:
上為減函數(shù)  13分

恒成立
得:  16分
考點(diǎn):本題主要考查導(dǎo)數(shù)的幾何意義,直線方程,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值,不等式恒成立問題。
點(diǎn)評(píng):中檔題,本題屬于導(dǎo)數(shù)應(yīng)用中的基本問題,利用曲線切線的斜率,等于函數(shù)在切點(diǎn)的導(dǎo)函數(shù)值,建立a的方程,達(dá)到解題目的。不等式恒成立問題,往往要通過研究函數(shù)的最值,確定得到參數(shù)的范圍。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=-ln(x+m).
(Ι)設(shè)x=0是f(x)的極值點(diǎn),求m,并討論f(x)的單調(diào)性;
(Ⅱ)當(dāng)m≤2時(shí),證明f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為,對(duì)于任意的,函數(shù) 的導(dǎo)函數(shù))在區(qū)間上總不是單調(diào)函數(shù),求的取值范圍;  
(Ⅲ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某商場(chǎng)銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量y(單位:千克)與銷售價(jià)格x(單位:元/千克)滿足關(guān)系式,其中3<x<6,a 為常數(shù),已知銷售價(jià)格為5元/千克時(shí),每日可售出該商品11千克。
(I)求a的值
(II)若該商品的成品為3元/千克,試確定銷售價(jià)格x的值,使商場(chǎng)每日銷售該商品所獲得的利潤最大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(其中).
(1)求的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上為增函數(shù),求的取值范圍;
(3)設(shè)函數(shù),當(dāng)時(shí),若存在,對(duì)任意的,總有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)若曲線處的切線互相平行,求的值;
(2)求的單調(diào)區(qū)間;
(3)設(shè),若對(duì)任意,均存在,使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的圖象經(jīng)過點(diǎn),且在處的切線方程是
(1)求的解析式;(2)求的單調(diào)遞增區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(為常數(shù),是自然對(duì)數(shù)的底數(shù)),曲線在點(diǎn)處的切線與軸平行.
(Ⅰ)求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),其中的導(dǎo)函數(shù).證明:對(duì)任意.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中.
(Ⅰ)當(dāng)=1時(shí),求在(1,)的切線方程
(Ⅱ)當(dāng)時(shí),,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案