【題目】如果一個實數(shù)數(shù)列滿足條件:(為常數(shù),,則這一數(shù)列為偽等差數(shù)列,偽公差”.給出下列關(guān)于某個偽等差數(shù)列的結(jié)論:其中正確的結(jié)論是__________________.

①對于任意的首項,若,則這一數(shù)列必為有窮數(shù)列;

②當(dāng)時,這一數(shù)列必為單調(diào)遞増數(shù)列;

③這一數(shù)列可以是周期數(shù)列;

④若這一數(shù)列的首項為1,偽公差為3,可以是這一數(shù)列中的一項.

【答案】③④

【解析】

通過取,設(shè)易知①不正確;通過,可知②不正確;不妨取偽公差即得這一數(shù)列是周期數(shù)列故③正確;通過代入計算可知④正確.

①.,若設(shè),則得,則數(shù)列可以為無窮數(shù)列,所以不正確.

②. 當(dāng), 設(shè)由,取, ,則數(shù)列不具有單調(diào)性,所以所以不正確.

③. 設(shè)由時,可取,此時數(shù)列是周期數(shù)列,所以正確.

④.當(dāng)時,,取,,則可取.所以正確.

所結(jié)論正確的是③④

故答案為:③④

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是兩個平面,m,n是兩條直線,有下列四個命題;

①如果,,那么.

②如果,,那么.

③如果,,那么.

④如果,,那么m所成的角和n所成的角相等.

其中正確的命題的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓與圓 相切,且與圓 相內(nèi)切,記圓心的軌跡為曲線.設(shè)為曲線上的一個不在軸上的動點, 為坐標(biāo)原點,過點的平行線交曲線, 兩個不同的點.

(Ⅰ)求曲線的方程;

(Ⅱ)試探究的比值能否為一個常數(shù)?若能,求出這個常數(shù),若不能,請說明理由;

(Ⅲ)記的面積為, 的面積為,令,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“綠水青山就是金山銀山”的理念越來越深入人心,據(jù)此,某網(wǎng)站調(diào)查了人們對生態(tài)文明建設(shè)的關(guān)注情況,調(diào)查數(shù)據(jù)表明,參與調(diào)查的人員中關(guān)注生態(tài)文明建設(shè)的約占80%.現(xiàn)從參與調(diào)查的關(guān)注生態(tài)文明建設(shè)的人員中隨機選出200人,并將這200人按年齡(單位:歲)分組:第1[1525),第2[25,35),第3[35,45),第4[45,55),第5[55,65],得到的頻率分布直方圖如圖所示.

(Ⅰ)求這200人的平均年齡(每一組用該組區(qū)間的中點值作為代表)和年齡的中位數(shù)(保留一位小數(shù));

(Ⅱ)現(xiàn)在要從年齡在第1,2組的人員中用分層抽樣的方法抽取5人,再從這5人中隨機抽取3人進行問卷調(diào)查,求抽取的3人中恰有2人的年齡在第2組中的概率;

(Ⅲ)若從所有參與調(diào)查的人(人數(shù)很多)中任意選出3人,設(shè)這3人中關(guān)注生態(tài)文明建設(shè)的人數(shù)為X,求隨機變量X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,底面四邊形為直角梯形,,為線段上一點.

(1)若,則在線段上是否存在點,使得平面?若存在,請確定點的位置;若不存在,請說明理由

(2)己知,若異面直線角,二而角的余弦值為,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知常數(shù),數(shù)列的前項和為, , ;

(1)求數(shù)列的通項公式;

(2)若,且是單調(diào)遞增數(shù)列,求實數(shù)的取值范圍;

(3)若, ,對于任意給定的正整數(shù),是否存在正整數(shù)、,使得?若存在,求出、的值(只要寫出一組即可);若不存在,請說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過點的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點。

(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程:

(2)若成等比數(shù)列,求a的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在我們的教材必修一中有這樣一個問題,假設(shè)你有一筆資金,現(xiàn)有三種投資方案供你選擇,這三種方案的回報如下:

方案一:每天回報元;

方案二:第一天回報元,以后每天比前一天多回報元;

方案三:第一天回報元,以后每天的回報比前一天翻一番.

記三種方案第天的回報分別為,,.

1)根據(jù)數(shù)列的定義判斷數(shù)列,,的類型,并據(jù)此寫出三個數(shù)列的通項公式;

2)小王準(zhǔn)備做一個為期十天的短期投資,他應(yīng)該選擇哪一種投資方案?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記拋物線的焦點為,點在拋物線上,且直線的斜率為1,當(dāng)直線過點時,.

1)求拋物線的方程;

2)若,直線交于點,,求直線的斜率.

查看答案和解析>>

同步練習(xí)冊答案