已知函數(shù)
(1)當a=1時,求曲線在點(3,)處的切線方程
(2)求函數(shù)的單調遞增區(qū)間
⑴; ⑵見解析
解析試題分析:⑴求曲線在某一點的切線方程,要求出斜率,則要先求出導函數(shù),有斜率再求切線方程時用斜截式就可以直接求出;⑵一般求函數(shù)的單調區(qū)間都會和函數(shù)的導函數(shù)相聯(lián)系,在本題中要注意還有參數(shù),所以在對導函數(shù)進行討論時要對的取值進行討論,要求函數(shù)的單調增區(qū)間即是求其導函數(shù)大于0時對應的的取值集合,關鍵是利用分類討論的思想對進行討論,注意不要漏掉任何一種可能的情況.
試題解析:(1)由已知得,其中,
,,∴,
切線方程:; 4分
(2),
令, .6分
當,時,,∴,∴單調遞增, .7分
當,若,則,
當,,,單調遞增,
當,在 上無遞增區(qū)間,
當單調遞增, .11分
當時,時,單調遞增, .12分
考點:利用導數(shù)判斷函數(shù)的單調性,對數(shù)函數(shù)的導函數(shù)的求法,直線的方程.
科目:高中數(shù)學 來源: 題型:解答題
(理)已知函數(shù)f(x)= -lnx,x∈[1,3].
(Ⅰ)求f(x)的最大值與最小值;
(Ⅱ)若f(x)<4-At對于任意的x∈[1,3],t∈[0,2]恒成立,求實數(shù)A的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題14分) 已知函數(shù),若
(1)求曲線在點處的切線方程;
(2)若函數(shù)在區(qū)間上有兩個零點,求實數(shù)b的取值范圍;
(3)當
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知a>0,函數(shù).
(1)若,求函數(shù)的極值,
(2)是否存在實數(shù),使得成立?若存在,求出實數(shù)的取值集合;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
定義在上的函數(shù)同時滿足以下條件:①函數(shù)在上是減函數(shù),在上是增函數(shù);②是偶函數(shù);③函數(shù)在處的切線與直線垂直.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設,若存在使得,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù)為奇函數(shù),其圖象在點處的切線與直線垂直,導函數(shù) 的最小值為.
(1)求的值;
(2)求函數(shù)的單調遞增區(qū)間,并求函數(shù)在上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)f(x)=ex+ax-1(e為自然對數(shù)的底數(shù)).
(Ⅰ)當a=1時,求過點(1,f(1))處的切線與坐標軸圍成的三角形的面積;
(II)若f(x)x2在(0,1 )上恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com