已知a>0,函數(shù).
(1)若,求函數(shù)的極值,
(2)是否存在實數(shù),使得成立?若存在,求出實數(shù)的取值集合;若不存在,請說明理由.
(1)極小值,沒有極大值;(2)存在,.
解析試題分析:本題主要考查導數(shù)的應用、不等式等基礎(chǔ)知識,考查思維能力、運算能力、分析問題與解決問題的能力,考查函數(shù)、轉(zhuǎn)化與化歸、特殊與一般等數(shù)學思想方法.第一問,先求導數(shù),判斷函數(shù)的單調(diào)性,根據(jù)極值的定義求極值;第二問,是恒成立問題,設(shè)出函數(shù),此題可以轉(zhuǎn)化為求函數(shù)最值的問題,此題比較綜合.
試題解析:(1)當時,,,
因為,所以當時,,當時,,所以函數(shù)在處取得極小值,函數(shù)沒有極大值. 4分
(2)令,即,
,令,,
所以有兩個不等根,,不妨設(shè),
所以在上遞減,在上遞增,所以成立,
因為,所以,所以.
令,,
所以在上遞增,在上遞減,
所以,又,
所以代入得,
所以. 12分
考點:1.用導數(shù)求極值;2.用導數(shù)判斷函數(shù)的單調(diào)性;3.求函數(shù)最值;4.恒成立問題.
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù)f(x)=+ax-lnx(a∈R).
(Ⅰ)當a=1時,求函數(shù)f(x)的極值;
(Ⅱ)當a≥2時,討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若對任意及任意,∈[1,2],恒有成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(Ⅰ)若函數(shù)在區(qū)間上存在極值,求實數(shù)的取值范圍;
(Ⅱ)如果當時,不等式恒成立,求實數(shù)的取值范圍,并且判斷代數(shù)式的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知
(1)若時,求函數(shù)在點處的切線方程;
(2)若函數(shù)在上是減函數(shù),求實數(shù)的取值范圍;
(3)令是否存在實數(shù),當是自然對數(shù)的底)時,函數(shù)的最小值是3,
若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù)(其中).
(1) 當時,求函數(shù)的單調(diào)區(qū)間和極值;
(2) 當時,函數(shù)在上有且只有一個零點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com