【題目】已知,是橢圓:的左、右焦點(diǎn),離心率為,,是平面內(nèi)兩點(diǎn),滿足,線段的中點(diǎn)在橢圓上,周長(zhǎng)為12.
(1)求橢圓的方程;
(2)若過(guò)的直線與橢圓交于,,求(其中為坐標(biāo)原點(diǎn))的取值范圍.
【答案】(1)(2)
【解析】
(1)連接,根據(jù)中位線定理結(jié)合橢圓的定義得出,再由橢圓的性質(zhì),即可得出橢圓的方程;
(2)當(dāng)直線的斜率不存在時(shí),將直線的方程代入橢圓方程,得出,當(dāng)直線的斜率存在時(shí),設(shè)出直線的方程并代入橢圓方程,結(jié)合韋達(dá)定理以及向量的數(shù)量積公式,得出,根據(jù)的范圍,即可得出的取值范圍.
(1)連接,∵
∴是線段的中點(diǎn)
∵是線段的中點(diǎn),∴,且
由橢圓的定義知,
∴周長(zhǎng)為,
由離心率為知,,解得,,∴
∴橢圓的方程為.
(2)當(dāng)直線的斜率不存在時(shí),直線
代入橢圓方程,解得
此時(shí)
當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為
橢圓的方程整理得,
設(shè),,則,
,解得
∴
∵,∴,∴,∴
∴
綜上所述,的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)f(x)在[0,π]上的單調(diào)遞減區(qū)間;
(2)在銳角△ABC的內(nèi)角A,B,C所對(duì)邊為a,b,c,已知f(A)=﹣1,a=2,求△ABC的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列的前n項(xiàng)和為,且,,數(shù)列的前n項(xiàng)和為,且.
(1)求數(shù)列,的通項(xiàng)公式.
(2)設(shè),數(shù)列的前n項(xiàng)和為,求.
(3)設(shè),求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】改革開(kāi)放40年來(lái),我國(guó)城市基礎(chǔ)設(shè)施發(fā)生了巨大的變化,各種交通工具大大方便了人們的出行需求.某城市的A先生實(shí)行的是早九晚五的工作時(shí)間,上班通常乘坐公交或地鐵加步行.已知從家到最近的公交站或地鐵站都需步行5分鐘,乘坐公交到離單位最近的公交站所需時(shí)間Z1(單位:分鐘)服從正態(tài)分布N(33,42),下車(chē)后步行再到單位需要12分鐘;乘坐地鐵到離單位最近的地鐵站所需時(shí)間Z2(單位:分鐘)服從正態(tài)分布N(44,22),從地鐵站步行到單位需要5分鐘.現(xiàn)有下列說(shuō)法:①若8:00出門(mén),則乘坐公交一定不會(huì)遲到;②若8:02出門(mén),則乘坐公交和地鐵上班遲到的可能性相同;③若8:06出門(mén),則乘坐公交比地鐵上班遲到的可能性大;④若8:12出門(mén),則乘坐地鐵比公交上班遲到的可能性大.則以上說(shuō)法中正確的序號(hào)是_____.
參考數(shù)據(jù):若Z~N(μ,σ2),則P(μ﹣σ<Z≤μ+σ)=0.6826,P(μ﹣2σ<Z≤μ+2σ)=0.9544,P(μ﹣3σ<Z≤μ+3σ)=0.9974
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),,.
(1)討論函數(shù)的單調(diào)性;
(2)若(其中),證明:;
(3)是否存在實(shí)數(shù)a,使得在區(qū)間內(nèi)恒成立,且關(guān)于x的方程在內(nèi)有唯一解?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】鎮(zhèn)江市長(zhǎng)江路江邊春江潮廣場(chǎng)要設(shè)計(jì)一尊鼎型塑像(如圖1),塑像總高度為12米,塑像由兩部分組成,上半部分由四根垂直于水平地面的等高垂直立柱組成(立柱上凸起部分忽略不計(jì)),下半部分由正四棱臺(tái)的上底面四根水平橫柱和正四棱臺(tái)的四根側(cè)棱斜柱組成,如圖2所示.設(shè)計(jì)要求正棱臺(tái)的水平橫柱長(zhǎng)度為4米,下底面邊長(zhǎng)為8米,設(shè)斜柱與地面的所成的角為.
(1)用表示塑像上半部分立柱的高度,并求的取值范圍?
(2)若該塑像上半部分立柱的造價(jià)為千元/米(立柱上凸起部分忽略不計(jì)),下半部分橫柱和斜柱的造價(jià)都為2千元/米,問(wèn)當(dāng)為何值時(shí),塑像總造價(jià)最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
已知函數(shù)的反函數(shù).定義:若對(duì)給定的實(shí)數(shù),函數(shù)與互為反函數(shù),則稱滿足“和性質(zhì)”;若函數(shù)與互為反函數(shù),則稱滿足“積性質(zhì)”.
(1) 判斷函數(shù)是否滿足“1和性質(zhì)”,并說(shuō)明理由;
(2) 求所有滿足“2和性質(zhì)”的一次函數(shù);
(3) 設(shè)函數(shù)對(duì)任何,滿足“積性質(zhì)”.求的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖是從2020年2月14日至2020年4月19日共66天的新冠肺炎中國(guó)/海外新增確診趨勢(shì)圖,根據(jù)該圖,下列結(jié)論中錯(cuò)誤的是( )
A.從2020年2月14日起中國(guó)已經(jīng)基本控制住國(guó)內(nèi)的新冠肺炎疫情
B.從2020年3月13日至2020年4月3日海外新冠肺炎疫情快速惡化
C.這66天海外每天新增新冠肺炎確診病例數(shù)的中位數(shù)在區(qū)間內(nèi)
D.海外新增新冠肺炎確診病例數(shù)最多的一天突破10萬(wàn)例
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知甲盒內(nèi)有大小相同的1個(gè)紅球和3個(gè)黑球,乙盒內(nèi)有大小相同的2個(gè)紅球和4個(gè)黑球,現(xiàn)從甲、乙兩個(gè)盒內(nèi)各任取2個(gè)球.
(1)求取出的4個(gè)球均為黑球的概率.
(2)求取出的4個(gè)球中恰有1個(gè)紅球的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com