【題目】鎮(zhèn)江市長江路江邊春江潮廣場要設計一尊鼎型塑像(如圖1),塑像總高度為12米,塑像由兩部分組成,上半部分由四根垂直于水平地面的等高垂直立柱組成(立柱上凸起部分忽略不計),下半部分由正四棱臺的上底面四根水平橫柱和正四棱臺的四根側棱斜柱組成,如圖2所示.設計要求正棱臺的水平橫柱長度為4米,下底面邊長為8米,設斜柱與地面的所成的角為.
(1)用表示塑像上半部分立柱的高度,并求的取值范圍?
(2)若該塑像上半部分立柱的造價為千元/米(立柱上凸起部分忽略不計),下半部分橫柱和斜柱的造價都為2千元/米,問當為何值時,塑像總造價最低?
科目:高中數學 來源: 題型:
【題目】新冠來襲,湖北告急!有一支援鄂醫(yī)療小隊由3名醫(yī)生和6名護士組成,他們全部要分配到三家醫(yī)院.每家醫(yī)院分到醫(yī)生1名和護士1至3名,其中護士甲和護士乙必須分到同一家醫(yī)院,則不同的分配方法有( )種
A.252B.540C.792D.684
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C1的參數方程為(t為參數),曲線C2的參數方程為(α為參數),以坐標原點為極點.x軸正半軸為極軸建立極坐標系.
(Ⅰ)求曲線C1的普通方程和曲線C2的極坐標方程;
(Ⅱ)射線與曲線C2交于O,P兩點,射線與曲線C1交于點Q,若△OPQ的面積為1,求|OP|的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,是橢圓:的左、右焦點,離心率為,,是平面內兩點,滿足,線段的中點在橢圓上,周長為12.
(1)求橢圓的方程;
(2)若過的直線與橢圓交于,,求(其中為坐標原點)的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數f(x)若存在x0∈R,f(x0)=x0成立,則稱x0為f(x)的不動點.已知f(x)=ax2+(b+1)x+b-1(a≠0).
(1)當a=1,b=-2時,求函數f(x)的不動點;
(2)若對任意實數b,函數f(x)恒有兩個相異的不動點,求a的取值范圍;
(3)在(2)的條件下,若y=f(x)圖象上A,B兩點的橫坐標是函數f(x)的不動點,且A,B兩點關于直線y=kx+對稱,求b的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了讓居民了解垃圾分類,養(yǎng)成垃圾分類的習慣,讓綠色環(huán)保理念深入人心.某市將垃圾分為四類:可回收物,餐廚垃圾,有害垃圾和其他垃圾.某班按此四類由位同學組成四個宣傳小組,其中可回收物宣傳小組有位同學,其余三個宣傳小組各有位同學.現(xiàn)從這位同學中選派人到某小區(qū)進行宣傳活動,則每個宣傳小組至少選派人的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】小明每天從家步行去學校,有兩條路線可以選擇,第一條路線,需走天橋,不用等紅燈,平均用時910秒;第二條路線,要經過兩個紅綠燈路口,如圖,A處為小明家,D處為學校,走路段需240秒,在B處有一紅綠燈,紅燈時長120秒,綠燈時長30秒,走路段需450秒,在C處也有一紅綠燈,紅燈時長100秒,綠燈時長50秒,走路段需200秒.小明進行了60天的試驗,每天都選擇第二條路線,并記錄了在B處等待紅燈的時長,經統(tǒng)計,60天中有48天在B處遇到紅燈,根據記錄的48天等待紅燈時長的數據繪制了下面的頻率分布直方圖.已知B處和C處的紅燈亮起的時刻恰好始終保持相同,且紅綠燈之間切換無時間間隔.
(1)若小明選擇第二條路線,設當小明到達B處的時刻為B處紅燈亮起后的第x秒()時,小明在B處等待紅燈的時長為y秒,求y關于x的函數的解析式;
(2)若小明選擇第二條路線,請估計小明在B處遇到紅燈的概率,并問小明是否可能在B處和C處都遇到紅燈;
(3)若取區(qū)間中點作為該區(qū)間對應的等待紅燈的時長,以這兩條路線的平均用時作為決策依據,小明應選擇哪一條路線?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】袋子A和B中裝有若干個均勻的紅球和白球,從A中摸出一個紅球的概率是,從B中摸出一個紅球的概率為p.
(1)從A中有放回地摸球,每次摸出一個,有3次摸到紅球即停止.求恰好摸5次停止的概率;
(2)若A,B兩個袋子中的球數之比為,將A,B中的球裝在一起后,從中摸出一個紅球的概率是,求p的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com