【題目】如圖,點(diǎn)在正方體的面對(duì)角線上運(yùn)動(dòng),則下列四個(gè)命題:
①面;
②;
③平面平面;
④三棱錐的體積不變.
其中正確的命題序號(hào)是______.
【答案】①②③④
【解析】
由面面平行的判定與性質(zhì)判斷①正確;由線面垂直的判定與性質(zhì)判斷②正確;由線面垂直的判定及面面垂直的判定判斷③正確;利用等積法說(shuō)明④正確.
解:對(duì)于①,連接,,可得,,
∴平面,從而有平面,故①正確;
對(duì)于②,由,,且,
得平面,則,故②正確;
對(duì)于③,連接,由且,可得平面,
又平面,由面面垂直的判定知平面平面,故③正確;
對(duì)于④,容易證明,從而平面,故上任意一點(diǎn)到平面的距離均相等,
∴以為頂點(diǎn),平面為底面,則三棱錐的體積不變,故④正確.
∴正確命題的序號(hào)是①②③④.
故答案為:①②③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,點(diǎn)到兩點(diǎn)的距離之和為4,設(shè)點(diǎn)的軌跡為,直線與交于兩點(diǎn)。
(Ⅰ)寫出的方程;
(Ⅱ)若,求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中是大于的常數(shù).
(1)求函數(shù)的定義域;
(2)當(dāng)時(shí), 求函數(shù)在上的最小值;
(3)若對(duì)任意恒有,試確定的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某污水處理廠要在個(gè)矩形ABCD的池底水平鋪設(shè)污水凈化管道(,E是直角頂點(diǎn))來(lái)處理污水,管道越長(zhǎng),污水凈化效果越好,設(shè)計(jì)要求管道的接口E是AB的中點(diǎn),F、G分別落在AD、BC上,且,,設(shè).
(1)試將污水管道的長(zhǎng)度l表示成的函數(shù),并寫出定義域;
(2)當(dāng)為何值時(shí),污水凈化效果最好,并求此時(shí)管道的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“”是“直線:與直線:平行”的( )
A. 充分而不必要條件B. 必要而充分不條件
C. 充要條件D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(–1,2),B(2,8)以及,=–13,求點(diǎn)C、D的坐標(biāo)和的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象的一個(gè)對(duì)稱中心與它相鄰的一條對(duì)稱軸之間的距離為.
(1)求函數(shù)f(x)的對(duì)稱軸方程及單調(diào)遞增區(qū)間;
(2)將函數(shù)y=f(x)的圖象向右平移個(gè)單位后,再將得到的圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,當(dāng)x∈(,)時(shí),求函數(shù)g(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)運(yùn)算是指在明晰運(yùn)算對(duì)象的基礎(chǔ)上,依據(jù)運(yùn)算法則解決數(shù)學(xué)問(wèn)題的素養(yǎng).因?yàn)檫\(yùn)算,數(shù)的威力無(wú)限;沒(méi)有運(yùn)算,數(shù)就只是一個(gè)符號(hào).對(duì)數(shù)運(yùn)算與指數(shù)冪運(yùn)算是兩類重要的運(yùn)算.
(1)對(duì)數(shù)的運(yùn)算性質(zhì)降低了運(yùn)算的級(jí)別,簡(jiǎn)化了運(yùn)算,在數(shù)學(xué)發(fā)展史上是偉大的成就.對(duì)數(shù)運(yùn)算性質(zhì)的推導(dǎo)有很多方法.請(qǐng)同學(xué)們根據(jù)所學(xué)知識(shí)推導(dǎo)如下的對(duì)數(shù)運(yùn)算性質(zhì):如果,且,,那么;
(2)請(qǐng)你運(yùn)用上述對(duì)數(shù)運(yùn)算性質(zhì)計(jì)算的值;
(3)因?yàn)?/span>,所以的位數(shù)為4(一個(gè)自然數(shù)數(shù)位的個(gè)數(shù),叫做位數(shù)).請(qǐng)你運(yùn)用所學(xué)過(guò)的對(duì)數(shù)運(yùn)算的知識(shí),判斷的位數(shù).(注)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐中,平面⊥平面, , , .
(Ⅰ)求證: ⊥平面;
(Ⅱ)求證: ⊥;
(Ⅲ)若點(diǎn)在棱上,且平面,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com