【題目】已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率等于,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn).

)求橢圓C的方程;

)點(diǎn)P(23), Q2,-3)在橢圓上,A,B是橢圓上位于直線PQ兩惻的動(dòng)點(diǎn),

若直線AB的斜率為,求四邊形APBQ面積的最大值;

當(dāng)A、B運(yùn)動(dòng)時(shí),滿足于∠APQ=∠BPQ,試問直線AB的斜率是否為定值,請(qǐng)說明理由.

【答案】1;2)(1;(2)直線的斜率是一個(gè)定值.

【解析】

(1)根據(jù)拋物線焦點(diǎn),求得b,再由離心率和橢圓中a、b、c的關(guān)系求得a、c的值,進(jìn)而得到橢圓的標(biāo)準(zhǔn)方程。

(2)設(shè)出A、B的坐標(biāo),聯(lián)立直線與橢圓的方程,結(jié)合韋達(dá)定理求得x1+x2=-2t,x1x2=2t2-4;由直線x=2與橢圓交于P,Q兩點(diǎn)可求得P,Q兩點(diǎn)的坐標(biāo),則四邊形APBQ的面積S=SAPQ+SBPQ即可得到面積的最大值;設(shè)出直線方程,聯(lián)立橢圓方程,化簡(jiǎn)得到關(guān)于x的一元二次方程,利用韋達(dá)定理得到AB斜率的表達(dá)形式,即可得到斜率為定值。

(1)設(shè)橢圓C的方程為=1(a>b>0),由題意可得它的一個(gè)頂點(diǎn)恰好是拋物線x2=4y的焦點(diǎn)(0,),b=.

再根據(jù)離心率,求得a=2,

∴橢圓C的方程為=1.

(2)①設(shè)A(x1,y1),B(x2,y2),AB的方程為y=x+t,代入橢圓C的方程化簡(jiǎn)可得x2+2tx+2t2-4=0,Δ=4t2-4(2t2-4)>0,求得-2<t<2.

由根與系數(shù)的關(guān)系可得x1+x2=-2t,x1x2=2t2-4.

=1,x=2求得P(2,1),Q(2,-1),

∴四邊形APBQ的面積S=SAPQ+SBPQ=·PQ·|x1-x2|=×2×|x1-x2|=|x1-x2|=,

故當(dāng)t=0時(shí),四邊形APBQ的面積S取得最大值為4.

②當(dāng)∠APQ=BPQ時(shí),PA,PB的斜率之和等于零,設(shè)PA的斜率為k,PB的斜率為-k,PA的方程為y-1=k(x-2),把它代入橢圓C的方程化簡(jiǎn)可得(1+4k2)x2+8k(1-2k)x+4(1-2k)2-8=0,

x2+2=.

同理可得直線PB的方程為y-1=-k(x-2),x2+2=,

x1+x2=,x1-x2=.

AB的斜率k=

=

=

=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若存在實(shí)常數(shù),使得函數(shù)對(duì)其公共定義域上的任意實(shí)數(shù)都滿足: 恒成立,則稱此直線的“隔離直線”,已知函數(shù), ,有下列命題:

內(nèi)單調(diào)遞增;

之間存在“隔離直線”,且的最小值為-4;

之間存在“隔離直線”,且的取值范圍是;

之間存在唯一的“隔離直線”.

其中真命題的個(gè)數(shù)有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a13,a2,且2an+13anan-1.

1)求證:數(shù)列{an+1an}是等比數(shù)列,并求數(shù)列{an}通項(xiàng)公式;

2)求數(shù)列{nan}的前n項(xiàng)和為Tn,若對(duì)任意的正整數(shù)n恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)高等數(shù)學(xué)這學(xué)期分別用兩種不同的數(shù)學(xué)方式試驗(yàn)甲、乙兩個(gè)大一新班(人數(shù)均為60人,入學(xué)數(shù)學(xué)平均分和優(yōu)秀率都相同;勤奮程度和自覺性都一樣).現(xiàn)隨機(jī)抽取甲、乙兩班各20名的高等數(shù)學(xué)期末考試成績(jī),得到莖葉圖。 學(xué)校規(guī)定:成績(jī)不得低于85分的為優(yōu)秀

(1)根據(jù)以上數(shù)據(jù)填寫下列的的列聯(lián)表

總計(jì)

成績(jī)優(yōu)秀

成績(jī)不優(yōu)秀

總計(jì)

(2)是否有的把握認(rèn)為成績(jī)優(yōu)異與教學(xué)方式有關(guān)?”(計(jì)算保留三位有效數(shù)字)

下面臨界值表僅供參考:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的函數(shù)和數(shù)列滿足下列條件:,,當(dāng)時(shí),,其中、均為非零常數(shù).

1)若是等差數(shù)列,求實(shí)數(shù)的值;

2)令),若,求數(shù)列的通項(xiàng)公式;

3)令),若,數(shù)列滿足,若數(shù)列有最大值,最小值,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某特色餐館開通了美團(tuán)外賣服務(wù),在一周內(nèi)的某特色菜外賣份數(shù)(份)與收入(元)之間有如下的對(duì)應(yīng)數(shù)據(jù):

外賣份數(shù)(份)

2

4

5

6

8

收入(元)

30

40

60

50

70

(1)畫出散點(diǎn)圖;

(2)求回歸直線方程;

(3)據(jù)此估計(jì)外賣份數(shù)為12份時(shí),收入為多少元.

注:①參考公式:線性回歸方程系數(shù)公式,

②參考數(shù)據(jù): , ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)解關(guān)于的不等式;

(2)若不等式的解集為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC-A1B1C1中,底面ABC為正三角形,側(cè)棱AA1⊥底面ABC.已知D是BC的中點(diǎn),AB=AA1=2.

(I)求證:平面AB1D⊥平面BB1C1C;

(II)求證:A1C∥平面AB1D;

(III)求三棱錐A1-AB1D的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論正確的是(

A.中,若,則

B.在銳角三角形中,不等式恒成立

C.中,若,,則為等腰直角三角形

D.中,若,三角形面積,則三角形外接圓半徑為

查看答案和解析>>

同步練習(xí)冊(cè)答案