【題目】已知函數(shù),直線圖象的一條對(duì)稱(chēng)軸.

1)求的單調(diào)遞減區(qū)間;

2)已知函數(shù)的圖象是由圖象上的各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的4倍,然后再向左平移個(gè)單位長(zhǎng)度得到,若,,求的值.

【答案】1,.(2

【解析】

1)首先根據(jù)兩角和的正弦公式及二倍角公式將函數(shù)化簡(jiǎn),根據(jù)直線圖象的一條對(duì)稱(chēng)軸,可得,即,可得,又,即可求出的值,從而求出函數(shù)解析式,再根據(jù)正弦函數(shù)的性質(zhì)求出函數(shù)的單調(diào)遞減區(qū)間;

2)根據(jù)三角函數(shù)的變換規(guī)則得到,由,可得,最后根據(jù)同角三角函數(shù)的基本關(guān)系及兩角差的正弦公式計(jì)算可得;

解:(1)∵函數(shù),

∵直線圖象的一條對(duì)稱(chēng)軸,故

故有,,故,

再由,∴,

,可得,,

的單調(diào)遞減區(qū)間為,

2)由(1)知,,可得

,可得,

,

解得,或

因?yàn)?/span>

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列結(jié)論正確的是(

A.中,若,則

B.在銳角三角形中,不等式恒成立

C.中,若,則為等腰直角三角形

D.中,若,,三角形面積,則三角形外接圓半徑為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,圓軸負(fù)半軸交于點(diǎn),過(guò)點(diǎn)的直線,分別與圓交于兩點(diǎn).

1)過(guò)點(diǎn)作圓的兩條切線,切點(diǎn)分別為,求;

2)若,求證:直線過(guò)定點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在上的函數(shù)存在零點(diǎn),且對(duì)任意都滿足,若關(guān)于的方程)恰有三個(gè)不同的根,則實(shí)數(shù)的取值范圍是____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列.

(1)是否存在實(shí)數(shù),使數(shù)列是等比數(shù)列?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由;

(2)若是數(shù)列的前項(xiàng)和,求滿足的所有正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),曲線 .以為極點(diǎn), 軸的非負(fù)半軸為極軸,與直角坐標(biāo)系取相同的長(zhǎng)度單位,建立極坐標(biāo)系.

1)求曲線的極坐標(biāo)方程;

2)射線)與曲線的異于極點(diǎn)的交點(diǎn)為,與曲線的交點(diǎn)為,求.

【答案】(1) 的極坐標(biāo)方程為, 的極坐標(biāo)方程為;(2) .

【解析】試題分析:(1先根據(jù)三角函數(shù)平方關(guān)系消參數(shù)得曲線,再根據(jù)將曲線極坐標(biāo)方程;2代人曲線的極坐標(biāo)方程,再根據(jù).

試題解析:1)曲線的參數(shù)方程為參數(shù))

可化為普通方程,

,可得曲線的極坐標(biāo)方程為,

曲線的極坐標(biāo)方程為.

2)射線)與曲線的交點(diǎn)的極徑為,

射線)與曲線的交點(diǎn)的極徑滿足,解得

所以.

型】解答
結(jié)束】
23

【題目】設(shè)函數(shù)

(1)設(shè)的解集為,求集合

(2)已知為(1)中集合中的最大整數(shù),且(其中,為正實(shí)數(shù)),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若關(guān)于的方程恰有兩個(gè)不相等的實(shí)數(shù)根, 則實(shí)數(shù)的取值范圍是

A. B. , C. , D. ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在△中, , 分別為, 的中點(diǎn), 的中點(diǎn), 將△沿折起到△的位置,使得平面平面 的中點(diǎn),如圖2

1求證: 平面;

2求證:平面平面;

3線段上是否存在點(diǎn),使得平面?說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在直三棱柱ABC A1B1C1中,已知AC⊥BC,BC=CC1,設(shè)AB1的中點(diǎn)為D,B1C∩BC1=E.

(1)求證:DE∥平面AA1C1C;

(2) 求證:BC1⊥AB1

(3)設(shè)AC=BC=CC1 =1,求銳二面角A- B1C- A1的余弦值。

查看答案和解析>>

同步練習(xí)冊(cè)答案