【題目】已知△ABC中,a、b、c分別為角A、B、C所在的對(duì)邊,且a=4,b+c=5,tanB+tanC+ = tanBtanC,則△ABC的面積為(
A.
B.3
C.
D.

【答案】C
【解析】解:由題意可得tanB+tanC= (﹣1+tanBtanC),∴tan(B+C)= =﹣ , ∴B+C= ,∴A=
由余弦定理可得 16=b2+(5﹣b)2﹣2b(5﹣b)cos ,∴b= ,c= ,
或 b= ,c=
則△ABC的面積為 bcsinA= × × × = ,所以答案是
【考點(diǎn)精析】本題主要考查了兩角和與差的正切公式的相關(guān)知識(shí)點(diǎn),需要掌握兩角和與差的正切公式:才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知菱形ABCD的頂點(diǎn)A,C在橢圓x2+3y2=4上,對(duì)角線BD所在直線的斜率為1.
(1)當(dāng)直線BD過點(diǎn)(0,1)時(shí),求直線AC的方程;
(2)當(dāng)∠ABC=60°時(shí),求菱形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)判斷函數(shù)f(x)在區(qū)間(0,1)和[1,+∞)上的單調(diào)性(不必證明);
(2)當(dāng)0<a<b,且f(a)=f(b)時(shí),求 的值;
(3)若存在實(shí)數(shù)a,b(1<a<b)使得x∈[a,b]時(shí),f(x)的取值范圍是[ma,mb](m≠0),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐V﹣ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC= ,O,M分別為AB,VA的中點(diǎn).
(1)求證:VB∥平面MOC;
(2)求證:平面MOC⊥平面VAB
(3)求三棱錐V﹣ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: +y2=1. (Ⅰ)求橢圓C的長(zhǎng)軸和短軸的長(zhǎng),離心率e,左焦點(diǎn)F1;
(Ⅱ)經(jīng)過橢圓C的左焦點(diǎn)F1作直線l,直線l與橢圓C相交于A,B兩點(diǎn),若|AB|= ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A、B分別為雙曲線 的左右頂點(diǎn),雙曲線的實(shí)軸長(zhǎng)為4 ,焦點(diǎn)到漸近線的距離為
(1)求雙曲線的方程;
(2)已知直線 與雙曲線的右支交于M、N兩點(diǎn),且在雙曲線的右支上存在點(diǎn)D,使 ,求t的值及點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),若方程有兩個(gè)相異實(shí)根,且,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: =1(a>b>0)的離心率為 ,過焦點(diǎn)垂直與x軸的直線被橢圓E截得的線段長(zhǎng)為
(1)求橢圓E的方程;
(2)斜率為k的直線l經(jīng)過原點(diǎn),與橢圓E相交于不同的兩點(diǎn)M,N,判斷并說明在橢圓E上是否存在點(diǎn)P,使得△PMN的面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=log2(ax2﹣2x+2)的定義域?yàn)镼.
(1)若a>0且[2,3]∩Q=,求實(shí)數(shù)a的取值范圍;
(2)若[2,3]Q,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案