【題目】(本小題滿分13分)如圖所示的莖葉圖記錄了甲、乙兩組各四名同學(xué)的投籃命中次數(shù), 乙組記錄中有一個(gè)數(shù)據(jù)模糊,無法確認(rèn), 在圖中以表示.

)如果乙組同學(xué)投籃命中次數(shù)的平均數(shù)為, 及乙組同學(xué)投籃命中次數(shù)的方差;

)在()的條件下, 分別從甲、乙兩組投籃命中次數(shù)低于10次的同學(xué)中,各隨機(jī)選取一名, 記事件A兩名同學(xué)的投籃命中次數(shù)之和為17”, 求事件A發(fā)生的概率.

【答案】,;(.

【解析】試題分析:()利用平均數(shù)公式即可求得x,利用方差的計(jì)算公式即可求得方差

)列出這兩名同學(xué)的投籃命中次數(shù)之和為17的所以時(shí)間利用古典概型即可求出概率

試題解析:()由題可得,

方差

)記甲組投籃命中次數(shù)低于10次的同學(xué)為,他們的投籃命中次數(shù)分別為9,7

記乙組投籃命中次數(shù)低于10次的同學(xué),他們的投籃命中次數(shù)分別為8,8,9,由題意

不同的選取方法有6種,

設(shè)這兩名同學(xué)的投籃命中次數(shù)之和為17”為事件,則中含有2種基本事件

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲參加A , BC三個(gè)科目的學(xué)業(yè)水平考試,其考試成績(jī)合格的概率如下表,假設(shè)三個(gè)科目的考試甲是否成績(jī)合格相互獨(dú)立.

科目A

科目B

科目C

(I)求甲至少有一個(gè)科目考試成績(jī)合格的概率;
(Ⅱ)設(shè)甲參加考試成績(jī)合格的科目數(shù)量為X , 求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖像是由函數(shù)的圖像經(jīng)如下變換得到:先將圖像上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來的2倍橫坐標(biāo)不變,再將所得到的圖像向右平移個(gè)單位長(zhǎng)度.

求函數(shù)的解析式,并求其圖像的對(duì)稱軸方程;

已知關(guān)于的方程內(nèi)有兩個(gè)不同的解

1求實(shí)數(shù)m的取值范圍;

2證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐PABC中,D,E,F(xiàn)分別為棱PC,AC,AB的中點(diǎn),已知PA⊥AC,PA=6,BC=8,DF=5.求證:

(1)直線PA∥平面DEF;
(2)平面BDE⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)容量為M的樣本數(shù)據(jù),其頻率分布表如下

(1)計(jì)算a,b的值;

(2)畫出頻率分布直方圖;

(3)用頻率分布直方圖,求出總體的眾數(shù)及平均數(shù)的估計(jì)值.

頻率分布表

分組

頻數(shù)

頻率

頻率/組距

(10,20]

2

0.10

0.010

(20,30]

3

0.15

0.015

(30,40]

4

0.20

0.020

(40,50]

a

b

0.025

(50,60]

4

0.20

0.020

(60, 70]

2

0.10

0.010

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ) (A>0,ω>0,0<φ<π),其導(dǎo)函數(shù)f′(x)的部分圖象如圖所示,則函數(shù)f(x)的解析式為(
A.f(x)=4sin( x+ π)
B.f(x)=4sin( x+
C.f(x)=4sin( x+
D.f(x)=4sin( x+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的一段圖象如圖所示:將的圖象向右平移)個(gè)單位,可得到函數(shù)的圖象,且圖象關(guān)于原點(diǎn)對(duì)稱.(1)求的值.

(2)求 的最小值,并寫出的表達(dá)式.

(3)設(shè)t>0,關(guān)于x的函數(shù)在區(qū)間上最小值為-2,求t的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn . 若Sn=2an﹣n,則 + + + =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)我們把一系列向量按次序排成一列,稱之為向量列,記作,已知向量列滿足:,

(1)證明:數(shù)列是等比數(shù)列;

(2)設(shè)表示向量間的夾角,若,對(duì)于任意正整數(shù),不等式恒成立,求實(shí)數(shù)的范圍

(3)設(shè),問數(shù)列中是否存在最小項(xiàng)?若存在,求出最小項(xiàng);若不存在,請(qǐng)說明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案