【題目】如圖,設(shè)橢圓兩頂點,短軸長為4,焦距為2,過點的直線與橢圓交于兩點.設(shè)直線與直線交于點.
(1)求橢圓的方程;
(2)求線段中點的軌跡方程;
(3)求證:點的橫坐標(biāo)為定值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行六面體ABCD﹣A1B1C1D1中,AA1=A1D,AB=BC,∠ABC=120°.
(1)證明:AD⊥BA1;
(2)若平面ADD1A1⊥平面ABCD,且A1D=AB,求直線BA1與平面A1B1CD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),若存在定義域內(nèi)某個區(qū)間,使得在上的值域也是,則稱函數(shù)在定義域上封閉.如果函數(shù)在上封閉,那么實數(shù)的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與拋物線有一條斜率為1的公共切線.
(1)求.
(2)設(shè)與拋物線切于點,作點關(guān)于軸的對稱點,在區(qū)域內(nèi)過作兩條關(guān)于直線對稱的拋物線的弦,.連接.
①求證:;
②設(shè)面積為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)習(xí)小組在生物研究性學(xué)習(xí)中,對春季晝夜溫差大小與黃豆種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,于是小組成員在3月份的31天中隨機挑選了5天進(jìn)行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:
日期 | 3月2日 | 3月8日 | 3月15日 | 3月22日 | 3月28日 |
溫差/ | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)/顆 | 23 | 25 | 30 | 26 | 14 |
(1)在這個學(xué)習(xí)小組中負(fù)責(zé)統(tǒng)計數(shù)據(jù)的那位同學(xué)為了減少計算量,他從這5天中去掉了3月2日與3月28日的兩組數(shù)據(jù),請根據(jù)這5天中的另三天的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所去掉的試驗數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
(參考公式:,)(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,在x軸正半軸上任意選定一點,過點M作與x軸垂直的直線交C于P,O兩點.
(1)設(shè),證明:拋物線在點P,Q處的切線方程的交點N與點M關(guān)于原點O對稱;
(2)通過解答(1),猜想求過拋物線上一點(不為原點)的切線方程的一種做法,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點F為拋物線C:()的焦點,過點F的動直線l與拋物線C交于M,N兩點,且當(dāng)直線l的傾斜角為45°時,.
(1)求拋物線C的方程.
(2)試確定在x軸上是否存在點P,使得直線PM,PN關(guān)于x軸對稱?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點處的切線方程為,求的值;
(2)若的導(dǎo)函數(shù)存在兩個不相等的零點,求實數(shù)的取值范圍;
(3)當(dāng)時,是否存在整數(shù),使得關(guān)于的不等式恒成立?若存在,求出的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地擬建造一座體育館,其設(shè)計方案側(cè)面的外輪廓線如圖所示:曲線是以點為圓心的圓的一部分,其中,是圓的切線,且,曲線是拋物線的一部分,,且恰好等于圓的半徑.
(1)若米,米,求與的值;
(2)若體育館側(cè)面的最大寬度不超過75米,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com