【題目】對于函數(shù),若存在定義域內(nèi)某個區(qū)間,使得在上的值域也是,則稱函數(shù)在定義域上封閉.如果函數(shù)在上封閉,那么實數(shù)的取值范圍是______.
【答案】
【解析】
先用定義證明函數(shù)在上遞增,再根據(jù)奇偶性可得函數(shù)在上為增函數(shù),然后討論和可得的單調(diào)性,當時,依題意可得是的兩個不同的實數(shù)解,由此可解得.當時,依題意可得,由此可推出.
.設,則,
因為,所以,
所以函數(shù)在上遞增,
又函數(shù)為奇函數(shù),所以函數(shù)在上為增函數(shù),
當時,函數(shù)為增函數(shù), 因為在上的值域也是,所以,即,
即是的兩個不同的實數(shù)解,解得或,
由得,
當時,為遞減函數(shù), 因為在上的值域也是,所以,即 ,
因為,所以,
所以,所以,因為,所以,即,
所以,所以,即.
綜上所述:或.
故答案為: .
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:=1(a>b>0),點A、B分別是橢圓C的左頂點和上頂點,直線AB與圓G:x2+y2=(c是橢圓的半焦距)相離,P是直線AB上一動點,過點P作圓G的兩切線,切點分別為M、N.
(1)若橢圓C經(jīng)過兩點、,求橢圓C的方程;
(2)當c為定值時,求證:直線MN經(jīng)過一定點E,并求·的值(O是坐標原點);
(3)若存在點P使得△PMN為正三角形,試求橢圓離心率的取值范圍..
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,橢圓E :的焦距為4,兩條準線間的距離為8,A,B分別為橢圓E的左、右頂點.
(1)求橢圓E 的標準方程;
(2)已知圖中四邊形ABCD 是矩形,且BC=4,點M,N分別在邊BC,CD上,AM與BN相交于第一象限內(nèi)的點P .①若M,N分別是BC,CD的中點,證明:點P在橢圓E上;②若點P在橢圓E上,證明:為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在矩形ABCD中,AB=4,AD=2,E是CD的中點,將△ADE沿AE折起,得到如圖2所示的四棱錐D1—ABCE,其中平面D1AE⊥平面ABCE.
(1)證明:BE⊥平面D1AE;
(2)設F為CD1的中點,在線段AB上是否存在一點M,使得MF∥平面D1AE,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設復數(shù),其中xnyn∈R,n∈N*,i為虛數(shù)單位,,z1=3+4i,復數(shù)zn在復平面上對應的點為Zn.
(1)求復數(shù)z2,z3,z4的值;
(2)是否存在正整數(shù)n使得?若存在,求出所有滿足條件的;若不存在,請說明理由;
(3)求數(shù)列的前項之和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖①,有一個長方體形狀的敞口玻璃容器,底面是邊長為20cm的正方形,高為30cm,內(nèi)有20cm深的溶液.現(xiàn)將此容器傾斜一定角度(圖②),且傾斜時底面的一條棱始終在桌面上(圖①、②均為容器的縱截面).
(1)要使傾斜后容器內(nèi)的溶液不會溢出,角的最大值是多少?
(2)現(xiàn)需要倒出不少于的溶液,當時,能實現(xiàn)要求嗎?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,設橢圓兩頂點,短軸長為4,焦距為2,過點的直線與橢圓交于兩點.設直線與直線交于點.
(1)求橢圓的方程;
(2)求線段中點的軌跡方程;
(3)求證:點的橫坐標為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“總把新桃換舊符”(王安石)、“燈前小草寫桃符”(陸游),春節(jié)是中華民族的傳統(tǒng)節(jié)日,在宋代人們用寫“桃符”的方式來祈福避禍,而現(xiàn)代人們通過貼“!弊、貼春聯(lián)、掛燈籠等方式來表達對新年的美好祝愿,某商家在春節(jié)前開展商品促銷活動,顧客凡購物金額滿50元,則可以從“!弊帧⒋郝(lián)和燈籠這三類禮品中任意免費領取一件,若有4名顧客都領取一件禮品,則他們中有且僅有2人領取的禮品種類相同的概率是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com