【題目】某芯片公司對今年新開發(fā)的一批5G手機(jī)芯片進(jìn)行測評,該公司隨機(jī)調(diào)查了100顆芯片,并將所得統(tǒng)計(jì)數(shù)據(jù)分為五個小組(所調(diào)查的芯片得分均在內(nèi)),得到如圖所示的頻率分布直方圖,其中.
(1)求這100顆芯片評測分?jǐn)?shù)的平均數(shù)(同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替).
(2)芯片公司另選100顆芯片交付給某手機(jī)公司進(jìn)行測試,該手機(jī)公司將每顆芯片分別裝在3個工程手機(jī)中進(jìn)行初測。若3個工程手機(jī)的評分都達(dá)到11萬分,則認(rèn)定該芯片合格;若3個工程手機(jī)中只要有2個評分沒達(dá)到11萬分,則認(rèn)定該芯片不合格;若3個工程手機(jī)中僅1個評分沒有達(dá)到11萬分,則將該芯片再分別置于另外2個工程手機(jī)中進(jìn)行二測,二測時,2個工程手機(jī)的評分都達(dá)到11萬分,則認(rèn)定該芯片合格;2個工程手機(jī)中只要有1個評分沒達(dá)到11萬分,手機(jī)公司將認(rèn)定該芯片不合格.已知每顆芯片在各次置于工程手機(jī)中的得分相互獨(dú)立,并且芯片公司對芯片的評分方法及標(biāo)準(zhǔn)與手機(jī)公司對芯片的評分方法及標(biāo)準(zhǔn)都一致(以頻率作為概率).每顆芯片置于一個工程手機(jī)中的測試費(fèi)用均為300元,每顆芯片若被認(rèn)定為合格或不合格,將不再進(jìn)行后續(xù)測試,現(xiàn)手機(jī)公司測試部門預(yù)算的測試經(jīng)費(fèi)為10萬元,試問預(yù)算經(jīng)費(fèi)是否足夠測試完這100顆芯片?請說明理由.
【答案】(1)(2)預(yù)算經(jīng)費(fèi)不夠測試完這100顆芯片,理由見解析
【解析】
(1)先求出,再利用頻率分布直方圖的平均數(shù)公式求這100顆芯片評測分?jǐn)?shù)的平均數(shù);(2)先求出每顆芯片的測試費(fèi)用的數(shù)學(xué)期望,再比較得解.
(1)依題意,,故.
又因?yàn)?/span>.所以,
所求平均數(shù)為
(萬分)
(2)由題意可知,手機(jī)公司抽取一顆芯片置于一個工程機(jī)中進(jìn)行檢測評分達(dá)到11萬分的概率.
設(shè)每顆芯片的測試費(fèi)用為X元,則X的可能取值為600,900,1200,1500,
,
,
故每顆芯片的測試費(fèi)用的數(shù)學(xué)期望為
(元),
因?yàn)?/span>,
所以顯然預(yù)算經(jīng)費(fèi)不夠測試完這100顆芯片.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】哈市某公司為了了解用戶對其產(chǎn)品的滿意度,從南崗區(qū)隨機(jī)調(diào)查了40個用戶,根據(jù)用戶對其產(chǎn)品的滿意度的評分,得到用戶滿意度評分的頻率分布表.
滿意度評分分組 | |||||
頻數(shù) | 2 | 8 | 14 | 10 | 6 |
(1)在答題卡上作出南崗區(qū)用戶滿意度評分的頻率分布直方圖;
南崗區(qū)用戶滿意度評分的頻率分布直方圖
(2)根據(jù)用戶滿意度評分,將用戶的滿意度評分分為三個等級:
滿意度評分 | 低于70分 | 70分到89分 | 不低于90分 |
滿意度等級 | 不滿意 | 滿意 | 非常滿意 |
估計(jì)南崗區(qū)用戶的滿意度等級為不滿意的概率;
(3)求該公司滿意度評分的中位數(shù)(保留小數(shù)點(diǎn)后兩位).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的左、右頂點(diǎn)為,,上、下頂點(diǎn)為,,記四邊形的內(nèi)切圓為.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)已知圓的一條不與坐標(biāo)軸平行的切線交橢圓于P,M兩點(diǎn).
(i)求證:;
(ii)試探究是否為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知圓的參數(shù)方程是(為參數(shù)).以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程是,射線:與圓的交點(diǎn)為、兩點(diǎn),與直線的交點(diǎn)為.
(1)求圓的極坐標(biāo)方程;
(2)求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知圓的參數(shù)方程是(為參數(shù)).以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程是,射線:與圓的交點(diǎn)為、兩點(diǎn),與直線的交點(diǎn)為.
(1)求圓的極坐標(biāo)方程;
(2)求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,.
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)且時.
①若有兩個極值點(diǎn),(),求證:;
②若對任意的,都有成立,求正實(shí)數(shù)t的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,側(cè)面⊥底面,底面為直角梯形,//,,,,為的中點(diǎn).
(Ⅰ)求證:PA//平面BEF;
(Ⅱ)若PC與AB所成角為,求的長;
(Ⅲ)在(Ⅱ)的條件下,求二面角F-BE-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,平面,為邊上一點(diǎn),,.
(1)證明:平面平面.
(2)若,試問:是否與平面平行?若平行,求三棱錐的體積;若不平行,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com