【題目】如圖,在三棱柱中,平面,為邊上一點(diǎn),,.
(1)證明:平面平面.
(2)若,試問:是否與平面平行?若平行,求三棱錐的體積;若不平行,請(qǐng)說明理由.
【答案】(1)詳見解析;(2)兩者平行,且 .
【解析】
(1)利用平面,證得平面,得到,利用余弦定理證得,由此證得平面,從而證得平面平面.(2)取的中點(diǎn),連接,通過證明四邊形為平行四邊形,證得,同理證得,所以平面平面,由此證得平面.利用求得三棱錐的體積.
(1)證明:因?yàn)锳A1⊥平面ABC,
所以BB1⊥平面ABC,
因?yàn)?/span>,
所以AD⊥BB1.
在△ABD中,由余弦定理可得,,
則,
所以AD⊥BC,
又,
所以AD⊥平面BB1C1C,
因?yàn)?/span>,
所以平面ADB1⊥平面BB1C1C.
(2)解:A1C與平面ADB1平行.
證明如下:取B1C1的中點(diǎn)E,連接DE,CE,A1E,
因?yàn)锽D=CD,所以DE∥AA1,且DE=AA1,
所以四邊形ADEA1為平行四邊形,
則A1E∥AD.
同理可證CE∥B1D.
因?yàn)?/span>,
所以平面ADB1∥平面A1CE,
又,
所以A1C∥平面ADB1.
因?yàn)锳A1∥BB1,
所以,
又,且易證BD⊥平面AA1D,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某化工企業(yè)2018年年底投入100萬元,購入一套污水處理設(shè)備。該設(shè)備每年的運(yùn)轉(zhuǎn)費(fèi)用是0.5萬元,此外,每年都要花費(fèi)一定的維護(hù)費(fèi),第一年的維護(hù)費(fèi)為2萬元,由于設(shè)備老化,以后每年的維護(hù)費(fèi)都比上一年增加2萬元。設(shè)該企業(yè)使用該設(shè)備年的年平均污水處理費(fèi)用為(單位:萬元)
(1)用表示;
(2)當(dāng)該企業(yè)的年平均污水處理費(fèi)用最低時(shí),企業(yè)需重新更換新的污水處理設(shè)備。則該企業(yè)幾年后需要重新更換新的污水處理設(shè)備。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某花圃為提高某品種花苗質(zhì)量,開展技術(shù)創(chuàng)新活動(dòng),在實(shí)驗(yàn)地分別用甲、乙方法培訓(xùn)該品種花苗.為觀測其生長情況,分別在實(shí)驗(yàn)地隨機(jī)抽取各株,對(duì)每株進(jìn)行綜合評(píng)分,將每株所得的綜合評(píng)分制成如圖所示的頻率分布直方圖.記綜合評(píng)分為及以上的花苗為優(yōu)質(zhì)花苗.
求圖中的值,并求綜合評(píng)分的中位數(shù).
用樣本估計(jì)總體,以頻率作為概率,若在兩塊試驗(yàn)地隨機(jī)抽取棵花苗,求所抽取的花苗中的優(yōu)質(zhì)花苗數(shù)的分布列和數(shù)學(xué)期望;
填寫下面的列聯(lián)表,并判斷是否有的把握認(rèn)為優(yōu)質(zhì)花苗與培育方法有關(guān).
附:下面的臨界值表僅供參考.
(參考公式:,其中.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:,過坐標(biāo)原點(diǎn)的直線交于,兩點(diǎn),點(diǎn)在第一象限,軸,垂足為.連結(jié)并延長交于點(diǎn).
(1)設(shè)到直線的距離為,求的取值范圍;
(2)求面積的最大值及此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小學(xué)舉辦“父母養(yǎng)育我,我報(bào)父母恩”的活動(dòng),對(duì)六個(gè)年級(jí)(一年級(jí)到六年級(jí)的年級(jí)代碼分別為1,2…,6)的學(xué)生給父母洗腳的百分比y%進(jìn)行了調(diào)查統(tǒng)計(jì),繪制得到下面的散點(diǎn)圖.
(1)由散點(diǎn)圖看出,可用線性回歸模型擬合y與x的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說明;
(2)建立y關(guān)于x的回歸方程,并據(jù)此預(yù)計(jì)該校學(xué)生升入中學(xué)的第一年(年級(jí)代碼為7)給父母洗腳的百分比.
附注:參考數(shù)據(jù):
參考公式:相關(guān)系數(shù),若r>0.95,則y與x的線性相關(guān)程度相當(dāng)高,可用線性回歸模型擬合y與x的關(guān)系.回歸方程中斜率與截距的最小二乘估計(jì)公式分別為= ,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知矩陣()滿足(I為單位矩陣).
(1)求m的值;
(2)設(shè),.矩陣變換可以將點(diǎn)P變換為點(diǎn)Q.當(dāng)點(diǎn)P在直線上移動(dòng)時(shí),求經(jīng)過矩陣A變換后點(diǎn)Q的軌跡方程.
(3)是否存在這樣的直線:它上面的任一點(diǎn)經(jīng)上述變換后得到的點(diǎn)仍在該直線上?若存在,求出所有這樣的直線;若不存在,則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小學(xué)舉辦“父母養(yǎng)育我,我報(bào)父母恩”的活動(dòng),對(duì)六個(gè)年級(jí)(一年級(jí)到六年級(jí)的年級(jí)代碼分別為1,2…,6)的學(xué)生給父母洗腳的百分比y%進(jìn)行了調(diào)查統(tǒng)計(jì),繪制得到下面的散點(diǎn)圖.
(1)由散點(diǎn)圖看出,可用線性回歸模型擬合y與x的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說明;
(2)建立y關(guān)于x的回歸方程,并據(jù)此預(yù)計(jì)該校學(xué)生升入中學(xué)的第一年(年級(jí)代碼為7)給父母洗腳的百分比.
附注:參考數(shù)據(jù):
參考公式:相關(guān)系數(shù),若r>0.95,則y與x的線性相關(guān)程度相當(dāng)高,可用線性回歸模型擬合y與x的關(guān)系.回歸方程中斜率與截距的最小二乘估計(jì)公式分別為= ,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論:
“直線l與平面平行”是“直線l在平面外”的充分不必要條件;
若p:,,則:,;
命題“設(shè)a,,若,則或”為真命題;
“”是“函數(shù)在上單調(diào)遞增”的充要條件.
其中所有正確結(jié)論的序號(hào)為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com