精英家教網 > 高中數學 > 題目詳情

已知定義在區(qū)間[0,1]上的函數圖象如圖所示,對于滿足0<<1的

任意,給出下列結論:

;

其中正確結論的序號是        .(把所有正確結論的序號都填寫在橫線上)

 

 

【答案】

②③

【解析】

試題分析:由可得,即兩點連線的斜率大于1,顯然①不正確;由 得,即表示兩點、與原點連線的斜率的大小,可以看出結論②正確;結合函數圖象,容易判斷③的結論是正確的.

考點:1.函數的圖像;2.直線的斜率.

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知定義在區(qū)間[0,2]上的函數y=f(x)的圖象如圖所示,則y=f(2-x)的圖象為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在區(qū)間[0,2]上的兩個函數f(x)和g(x),其中f(x)=x2-2ax+4(a≥1),g(x)=
2x3

(1)求函數y=f(x)的最小值m(a)及g(x)的值域;
(2)若對任意x1、x2∈[0,2],f(x2)>g(x1)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•順義區(qū)二模)已知定義在區(qū)間[0,
2
]上的函數y=f(x)的圖象關于直線x=
4
對稱,當x
4
時,f(x)=cosx,如果關于x的方程f(x)=a有解,記所有解的和為S,則S不可能為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

填空題
(1)已知
cos2x
sin(x+
π
4
)
=
4
3
,則sin2x的值為
1
9
1
9

(2)已知定義在區(qū)間[0,
2
]
上的函數y=f(x)的圖象關于直線x=
4
對稱,當x≥
4
時,f(x)=cosx,如果關于x的方程f(x)=a有四個不同的解,則實數a的取值范圍為
(-1,-
2
2
)
(-1,-
2
2
)


(3)設向量
a
,
b
,
c
滿足
a
+
b
+
c
=
0
,(
a
-
b
)⊥
c
a
b
,若|
a
|=1
,則|
a
|2+|
b
|2+|
c
|2
的值是
4
4

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在區(qū)間[0,2]上的兩個函數f(x)和g(x),其中f(x)=x2-2ax+4(a≥1),g(x)=
2xx+1

(1)求函數y=f(x)的最小值m(a)及g(x)的值域;
(2)若對任意x1、x2∈[0,2],f(x2)>g(x1)恒成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案