已知曲線C上動(dòng)點(diǎn)P(x,y)到定點(diǎn)F1(,0)與定直線l1∶x=的距離之比為常數(shù).
(1)求曲線C的軌跡方程;
(2)以曲線C的左頂點(diǎn)T為圓心作圓T:(x+2)2+y2=r2(r>0),設(shè)圓T與曲線C交于點(diǎn)M與點(diǎn)N,求·的最小值,并求此時(shí)圓T的方程.
(1)+y2=1(2)(x+2)2+y2
(1)過點(diǎn)P作直線的垂線,垂足為D.
,所以該曲線的方程為+y2=1.
(2)點(diǎn)M與點(diǎn)N關(guān)于x軸對(duì)稱,設(shè)M(x1,y1),N(x1,-y1),不妨設(shè)y1>0.由于點(diǎn)M在橢圓C上,所以=1-.由已知T(-2,0),則=(x1+2,y1),=(x1+2,-y1),∴·=(x1+2,y1)·(x1+2,-y1)=(x1+2)2=(x1+2)2+4x1+3=·.由于-2<x1<2,故當(dāng)x1=-時(shí),·取得最小值為-.計(jì)算得,y1,故M.
又點(diǎn)M在圓T上,代入圓的方程得到r2.故圓T的方程為(x+2)2+y2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓C1的右焦點(diǎn)為F,P為橢圓上的一個(gè)動(dòng)點(diǎn).
(1)求線段PF的中點(diǎn)M的軌跡C2的方程;
(2)過點(diǎn)F的直線l與橢圓C1相交于點(diǎn)A、D,與曲線C2順次相交于點(diǎn)B、C,當(dāng)時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓:的離心率為,過橢圓右焦點(diǎn)的直線與橢圓交于點(diǎn)(點(diǎn)在第一象限).
(1)求橢圓的方程;
(2)已知為橢圓的左頂點(diǎn),平行于的直線與橢圓相交于兩點(diǎn).判斷直線是否關(guān)于直線對(duì)稱,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
(1)求橢圓C的標(biāo)準(zhǔn)方程。
(2)過點(diǎn)Q(0,)的直線與橢圓交于A、B兩點(diǎn),與直線y=2交于點(diǎn)M(直線AB不經(jīng)過P點(diǎn)),記PA、PB、PM的斜率分別為k1、k2、k3,問:是否存在常數(shù),使得若存在,求出名的值:若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓+y2=1的左頂點(diǎn)為A,過A作兩條互相垂直的弦AM、AN交橢圓于M、N兩點(diǎn).
(1)當(dāng)直線AM的斜率為1時(shí),求點(diǎn)M的坐標(biāo);
(2)當(dāng)直線AM的斜率變化時(shí),直線MN是否過x軸上的一定點(diǎn)?若過定點(diǎn),請(qǐng)給出證明,并求出該定點(diǎn);若不過定點(diǎn),請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓=1(a>b>0)的離心率為,且過點(diǎn)P,A為上頂點(diǎn),F(xiàn)為右焦點(diǎn).點(diǎn)Q(0,t)是線段OA(除端點(diǎn)外)上的一個(gè)動(dòng)點(diǎn),

過Q作平行于x軸的直線交直線AP于點(diǎn)M,以QM為直徑的圓的圓心為N.
(1)求橢圓方程;
(2)若圓N與x軸相切,求圓N的方程;
(3)設(shè)點(diǎn)R為圓N上的動(dòng)點(diǎn),點(diǎn)R到直線PF的最大距離為d,求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在y軸上,若其離心率為,焦距為8,則該橢圓的方程是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

是橢圓上的點(diǎn),、是橢圓的兩個(gè)焦點(diǎn),,則 的面積等于______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知?jiǎng)狱c(diǎn)在橢圓上,為橢圓的右焦點(diǎn),若點(diǎn)滿足,則的最小值為(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案