【題目】已知函數(shù)(,且).
(1)當(dāng)時(shí),設(shè)集合,求集合;
(2)在(1)的條件下,若,且滿(mǎn)足,求實(shí)數(shù)的取值范圍;
(3)若對(duì)任意的,存在,使不等式恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1)(2)(3).
【解析】試題分析:(1)將代入,解對(duì)數(shù)不等式即可求出;(2)化簡(jiǎn)不等式,可得,即 ,再結(jié)合,列出不等式組即可求解;(3)原問(wèn)題等價(jià)于當(dāng)時(shí), ,分別根據(jù)增減性求出兩個(gè)函數(shù)的最小值即可建立不等式,解不等式即可求出的取值范圍.
試題解析:
(1)由時(shí),由得,即,解得
,所以.
(2)由得,所以可轉(zhuǎn)化為; 在上恒成立,解得實(shí)數(shù)的取值范圍為.
(3)對(duì)任意的,存在,使不等式恒成立,等價(jià)于
時(shí), .
當(dāng)時(shí),由復(fù)合函數(shù)的單調(diào)性可知為上的減函數(shù), 為上的增函數(shù), 等價(jià)于,即,解得;
當(dāng)時(shí), 為上的增函數(shù), 為上的減函數(shù), 等價(jià)于,即,解得.
綜上,實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】<中華人民共和國(guó)個(gè)人所得稅法>規(guī)定,公民全月工資、薪金所得不超過(guò)3500元的部分不必納稅,超過(guò)3500元的部分為全月應(yīng)納稅所得額,此項(xiàng)稅款按下表分段累計(jì)計(jì)算:
(1)若某人一月份應(yīng)繳納此項(xiàng)稅款為280元,那么他當(dāng)月的工資、薪金所得是多少?
(2)假設(shè)某人一個(gè)月的工資、薪金所得是元(0<10000),試將其當(dāng)月應(yīng)繳納此項(xiàng)稅款元表示成關(guān)于的函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校從6名學(xué)生會(huì)干部(其中男生4人,女生2人)中選3人參加青年聯(lián)合會(huì)志愿者。
(1)設(shè)所選3人中女生人數(shù)為 ,求 的分布列及數(shù)學(xué)期望;
(2)在男生甲被選中的情況下,求女生乙也被選中的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:指數(shù)函數(shù)f(x)=(m+1)x是減函數(shù);命題q:x∈R,x2+x+m<0,若“p或q”是真命題,則實(shí)數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知三棱柱的所有棱長(zhǎng)都相等,且側(cè)棱垂直于底面,由沿棱柱側(cè)面經(jīng)過(guò)棱到點(diǎn)的最短路線(xiàn)長(zhǎng)為,設(shè)這條最短路線(xiàn)與的交點(diǎn)為.
(1)求三棱柱的體積;
(2)證明:平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)經(jīng)過(guò)直線(xiàn)與的交點(diǎn).
(1)點(diǎn)到直線(xiàn)的距離為3,求直線(xiàn)的方程;
(2)求點(diǎn)到直線(xiàn)的距離的最大值,并求距離最大時(shí)的直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,已知 ,sinB=cosAsinC,S△ABC=6,P為線(xiàn)段AB上的點(diǎn),且 ,則xy的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=lnx﹣ax,a∈R.
(1)當(dāng)x=1時(shí),函數(shù)f(x)取得極值,求a的值;
(2)當(dāng)0<a< 時(shí),求函數(shù)f(x)在區(qū)間[1,2]上的最大值;
(3)當(dāng)a=﹣1時(shí),關(guān)于x的方程2mf(x)=x2(m>0)有唯一實(shí)數(shù)解,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)(且),當(dāng)點(diǎn)是函數(shù)圖象上的點(diǎn)時(shí),點(diǎn)是函數(shù)圖象上的點(diǎn).
(1)寫(xiě)出函數(shù)的解析式;
(2)把的圖象向左平移個(gè)單位得到的圖象,函數(shù),是否存在實(shí)數(shù),使函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>.如果存在,求出的值;如果不存在,說(shuō)明理由;
(3)若當(dāng)時(shí),恒有,試確定的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com