【題目】在高中學(xué)習(xí)過程中,同學(xué)們經(jīng)常這樣說“如果物理成績好,那么學(xué)習(xí)數(shù)學(xué)就沒什么問題”某班針對“高中生物理對數(shù)學(xué)學(xué)習(xí)的影響”進(jìn)行研究,得到了學(xué)生的物理成績與數(shù)學(xué)成績具有線性相關(guān)關(guān)系的結(jié)論,現(xiàn)從該班隨機抽取5名學(xué)生在一次考試中的物理和數(shù)學(xué)成績,如表:

編號成績

1

2

3

4

5

物理(x)

90

85

74

68

63

數(shù)學(xué)(y)

130

125

110

95

90

(1)求數(shù)學(xué)y成績關(guān)于物理成績x的線性回歸方程(精確到0.1),若某位學(xué)生的物理成績?yōu)?0分時,預(yù)測他的數(shù)學(xué)成績.

(2)要從抽取的這五位學(xué)生中隨機選出三位參加一項知識競賽,以x表示選中的學(xué)生的數(shù)學(xué)成績高于100分的人數(shù),求隨機變量X的分布列及數(shù)學(xué)期望.

【答案】(1) , 預(yù)測他的數(shù)學(xué)成績是116

(2) X的分布列為:

X

1

2

3

p

EX)=1.8

【解析】

1)根據(jù)表中數(shù)據(jù)計算 ,求出回歸系數(shù) ,寫出回歸方程,

利用回歸方程計算x80 的值即可;

2)抽取的五位學(xué)生中成績高于100分的有3人,X的可以取1,23,

計算對應(yīng)的概率值,寫出X的分布列,計算數(shù)學(xué)期望值.

解:(1)根據(jù)表中數(shù)據(jù)計算 ×(90+85+74+68+63)=76

×(130+125+110+95+90)=110,

902+852+742+682+63229394,

90×130+85×125+74×110+68×95+63×9042595,

=/span> ,

x、y的線性回歸方程是

當(dāng)x80時, 1.5×804116

即某位同學(xué)的物理成績?yōu)?/span>80分,預(yù)測他的數(shù)學(xué)成績是116

2)抽取的五位學(xué)生中成績高于100分的有3人,

X表示選中的同學(xué)中高于100分的人數(shù),可以取1,23,

PX1)=PX2)=,

PX3)=

X的分布列為:

X

1

2

3

p

X的數(shù)學(xué)期望值為EX)=1× +2×+3× 1.8

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

Ⅰ)若的極小值點,求實數(shù)的取值范圍及函數(shù)的極值;

Ⅱ)當(dāng),求函數(shù)在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中, 是坐標(biāo)原點,設(shè)函數(shù)的圖象為直線,且軸、軸分別交于、兩點,給出下列四個命題:

存在正實數(shù),使的面積為的直線僅有一條;

存在正實數(shù),使的面積為的直線僅有二條;

存在正實數(shù),使的面積為的直線僅有三條;

存在正實數(shù),使的面積為的直線僅有四條.

其中,所有真命題的序號是( ).

A. ①②③ B. ③④ C. ②④ D. ②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(sinx+cosx)2-cos2x.

(I)求f(x)的最小正周期;

(II)求證:當(dāng)x∈[0, ]時,f(x)≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信是騰訊公司推出的一種手機通訊軟件,它支持發(fā)送語音短信、視頻、圖片和文字,一經(jīng)推出便風(fēng)靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時間情況,某經(jīng)銷化妝品的微商在一廣場隨機采訪男性、女性微信用戶各50名.其中每天玩微信時間超過6小時的用戶列為微信控,否則稱其為非微信控,調(diào)查結(jié)果如表:

微信控

非微信控

合計

男性

26

24

50

女性

30

20

50

合計

56

44

100

(1)根據(jù)以上數(shù)據(jù),能否有60%的把握認(rèn)為“微信控”與“性別”有關(guān)?

(2)現(xiàn)從參與調(diào)查的女性用戶中按分層抽樣的方法選出5人贈送營養(yǎng)面膜1份,求所抽取的5人中“微信控”和“非微信控”的人數(shù);

(3)從(2)中抽選取的5人中再隨機抽取3人贈送價值200元的護(hù)膚品套裝,記這3人中“微信控”的人數(shù)為X,試求X的分布列及數(shù)學(xué)期望及方差.

參考公式:,其中n=a+b+c+d.

P(K2≥k0

0.50

0.40

0.25

0.05

0.025

0.010

k0

0.455

0.708

1.323

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知分別是橢圓C: 的左、右焦點,其中右焦點為拋物線的焦點,點在橢圓C.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)設(shè)與坐標(biāo)軸不垂直的直線與橢圓C交于A、B兩點,過點且平行直線的直線交橢圓C于另一點N,若四邊形MNBA為平行四邊形,試問直線是否存在?若存在,請求出的斜率;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的是( )

A.若正數(shù)是等差數(shù)列,則是等比數(shù)列

B.若正數(shù)是等比數(shù)列,則是等差數(shù)列

C.若正數(shù)是等差數(shù)列,則是等比數(shù)列

D.若正數(shù)是等比數(shù)列,則是等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象過原點,且在處取得極值,直線與曲線在原點處的切線互相垂直.

求函數(shù)的解析式;

若對任意實數(shù)的,恒有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種大型醫(yī)療檢查機器生產(chǎn)商,對一次性購買2臺機器的客戶,推出兩種超過質(zhì)保期后兩年內(nèi)的延保維修優(yōu)惠方案:方案一:交納延保金7000元,在延保的兩年內(nèi)可免費維修2次,超過2次每次收取維修費2000元;方案二:交納延保金10000元,在延保的兩年內(nèi)可免費維修4次,超過4次每次收取維修費1000元.某醫(yī)院準(zhǔn)備一次性購買2臺這種機器,F(xiàn)需決策在購買機器時應(yīng)購買哪種延保方案,為此搜集并整理了50臺這種機器超過質(zhì)保期后延保兩年內(nèi)維修的次數(shù),得下表:

維修次數(shù)

0

1

2

3

臺數(shù)

5

10

20

15

以這50臺機器維修次數(shù)的頻率代替1臺機器維修次數(shù)發(fā)生的概率,記X表示這2臺機器超過質(zhì)保期后延保的兩年內(nèi)共需維修的次數(shù)。

(1)求X的分布列;

(2)以所需延保金及維修費用的期望值為決策依據(jù),醫(yī)院選擇哪種延保方案更合算?

查看答案和解析>>

同步練習(xí)冊答案