【題目】學校藝術(shù)節(jié)對同一類的, , 四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品獲獎情況預測如下:

甲說:“作品獲得一等獎”

乙說:“作品獲得一等獎”

丙說:“, 兩項作品未獲得一等獎”

丁說:“作品獲得一等獎”.

若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________

【答案】

【解析】解:若A為一等獎,則甲,丙,丁的說法均錯誤,故不滿足題意,

B為一等獎,則乙,丙說法正確,甲,丁的說法錯誤,故滿足題意,

C為一等獎,則甲,丙,丁的說法均正確,故不滿足題意,

D為一等獎,則只有甲的說法正確,故不合題意,

故若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是B.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知某運動員每次投籃命中的概率等于 .現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產(chǎn)生09之間取整數(shù)值的隨機數(shù),指定1,23,4表示命中,56,78,9,0,表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}是一個公差大于0的等差數(shù)列,且滿足,a2+a7=16

1)求數(shù)列{an}的通項公式;

2)數(shù)列{an}和數(shù)列{bn}滿足等式 nN*),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正方體ABCD﹣A1B1C1D1的棱AA1=2,求:

(1)求異面直線A1D與AC所成角的大;
(2)求四面體A1﹣DCA的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】正四棱錐(底面為正方形,頂點在底面上的射影是底面的中心)S﹣ABCD的底面邊長為2,高為2,E為邊BC的中點,動點P在表面上運動,并且總保持PE⊥AC,則動點P的軌跡的周長為(
A.
B.
C.3
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】醫(yī)生的專業(yè)能力參數(shù)可有效衡量醫(yī)生的綜合能力,越大,綜合能力越強,并規(guī)定: 能力參數(shù)不少于30稱為合格,不少于50稱為優(yōu)秀.某市衛(wèi)生管理部門隨機抽取300名醫(yī)生進行專業(yè)能力參數(shù)考核,得到如圖所示的能力的頻率分布直方圖:

)求出這個樣本的合格率、優(yōu)秀率;

)現(xiàn)用分層抽樣的方法從中抽出一個樣本容量為20的樣本,再從這20名醫(yī)生中隨機選出2名.

求這2名醫(yī)生的能力參數(shù)為同一組的概率;

設這2名醫(yī)生中能力參數(shù)為優(yōu)秀的人數(shù)為,求隨機變量的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,半徑為的圓形紙板內(nèi)有一個相同圓心的半徑為的小圓,現(xiàn)將半徑為的一枚硬幣拋到此紙板上,使整塊硬幣完全隨機落在紙板內(nèi),則硬幣與小圓無公共點的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為倡導全體學生為特困學生捐款,舉行“一元錢,一片心,誠信用水”活動,學生在購水處每領(lǐng)取一瓶礦泉水,便自覺向捐款箱中至少投入一元錢.現(xiàn)統(tǒng)計了連續(xù)5天的售出和收益情況,如表:

售出水量x(單位:箱)

7

6

6

5

6

收益y(單位:元)

165

142

148

125

150


(1)求y關(guān)于x的線性回歸方程;
(2)預測售出8箱水的收益是多少元?
附:回歸直線的斜率和截距的最小二乘法估計公式分別為: = , =
參考數(shù)據(jù):7×165+6×142+6×148+5×125+6×150=4420.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【廣東省惠州市2017屆高三上學期第二次調(diào)研】已知點,點是圓上的任意一點,線段的垂直平分線與直線交于點

)求點的軌跡方程;

)若直線與點的軌跡有兩個不同的交點,且原點總在以為直徑的圓的內(nèi)部,求實數(shù)的取值范圍

查看答案和解析>>

同步練習冊答案